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INITIALIZATION, CONCEPTUALIZATION, AND APPLICATION
IN THE
GENERALIZED FRACTIONAL CALCULUS

Carl F. Lorenzo
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

Tom T. Hartley
University of Akron
Department of Electrical Engineering
Akron, Ohio

Abstract

This paper provides a formalized basis for initialization in the fractional calculus. The intent
is to make the fractional calculus readily accessible to engineering and the sciences. A modified
set of definitions for the fractional calculus is provided which formally include the effects of
initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical
examples of the basic elements from electronics are presented along with examples from
dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to
indicate the broad application of the theory and to demonstrate the use of the mathematics. The
fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for
the generalized fractional calculus under appropriate conditions. A new generalized form for the
Laplace transform of the generalized differintegral is derived. The concept of a variable structure
(order) differintegral is presented along with initial efforts toward meaningful definitions.

1. Introduction

The development of fractional calculus is nearly as old as the development of the actual
calculus. Discussion as early as 1695 by Leibnitz, and later by others, indicates an interest in
integrals and derivatives of fractional (non-integer) order. Excellent historical summaries of the
development of the fractional calculus can be found in Oldham and Spanier (1974) and Miller
and Ross (1993). Although much attention has been directed toward the development of the
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fractional calculus, this has largely been in the domain of the mathematician and the applied
mathematician with relatively little work being done in the engineering and applied sciences.

Strong motivation exists for the study, development, and generalization of the fractional
calculus. This may be readily validated by looking ahead to the Applications section of this paper
where a broad range of problems are described and solved using a generalization of the fractional
calculus. The unifying concepts and notation of the fractional calculus provide a significant
benefit that greatly simplifies the solution of certain partial differential equations (distributed
systems). Perhaps the strongest motivation to develop the fractional calculus is the belief that a
wide variety of physical problems and engineering disciplines that have resisted compact (and
first principles) description and solution when using the integer order calculus will yield to the
methods of the fractional calculus. These include such areas as heat transfer, boundary layer
behavior, and many problems where the major recourse has been to probabilistic methods.

This paper looks at some of the primary problems with the fractional calculus, as it is now
embodied, and attempts to rectify some of these with a modified (alternative) embodiment. The
basic approach that has been taken in this work has been to make the defined mathematics as
maximally applicable to the problems of engineering and science as possible. To this end, basic
distributed dynamic systems have been developed for use as reference fractional systems. The
authors have tried to maintain maximal generality in these reference systems (Hartley and
Lorenzo (1998)) as required for the new definitions.

The problems that the authors perceive to bar widespread application of the fractional calculus
in the engineering sciences will now be discussed. The operative basis definition for this section
will be the contemporary, Riemann-Liouville definition, which is that integration of arbitrary order
is given by
d-

[d(t- c)]_

where—w < c<t andv=0 andl(v) is the gamma function. The notation here is as follows: the
left term is that of Ross (1974) and, originally, Davis (1936), and the middle term is that of Oldham
and Spanier (1974). For simplicity in this papeis constrained to be a real number (or real
variable). The reader is cautioned that the notation used later in the paper is the same as Ross but
has a different (generalized) meaning, which is defined there.

Contemporary differentiation is defined as

DT (t)=

D f(t) = = (ij dr, (L)

d” —-q
g <D f (), (L2)

wherev=m- g andv =0 andmis an integer ¥. For the reader new to the fractional calculus

it should be noted that several other basis definitions have been forwarded by various authors.
Reference to these may be found in the following excellent publications: Miller and Ross (1993),
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Oldham and Spanier (1974), Samko et al. (1993), and elsewhere. It is further noted that equation

(1.1) is a positive runningt fncreasing) integration since it is required thatr > 0.

Alternatives are discussed in the literature that may be viewed as negative running integrations

such as the Weyl definition for fractional integration (see for example, Miller and Ross (1993)).
One of the fundamental problems of contemporary fractional calculus, is the requirement that

the function f (t) and its derivatives be identically equal to zerotferc (i.e., the time of

initialization) (Ross (1974)) or lacking this, to limit the functions handled to special classes (see

for example, Miller and Ross, (1993)). This is needed to assure that composition (the index law)

holds, that is, to assure that

DY DY f(t)=.Dy DIf(t)= D" f(t). (L3)

It is difficult, in the engineering sciences, to always require that the functions and derivatives
be zero at initialization. This fundamentally says thate can either be no initialization or
composition is lostThus, it is not in general true that

d® def
dt® dt°

=0 (14)

(see for example, Oldham and Spanier (1974), pp. 155 and 82-87).
Thus, when solving a fractional ordinary differential equation of the form
de f

F = F, (15)

additional terms must be addended to equation (1.4)

f d® d®f _ Q+ Q-2 Q-m 16
4@ ge Cit?™+ Cot™+. .. Ct™ ™, (16)
to achieve the most general solution
.QF
f= ddt_Q + CtM Cot¥%+ L L. CutO™ 17)

The reader is referred to Oldham and Spanier (1974) for a detailed exposition in this area. The
added terms are analogous to the effects of the constants of integration in the integer order
calculus.

Both of the above issues are related to the inadequacy of the composition law. This
inadequacy of the composition law, in fact, points to a problem with the fundamental definitions
used as the basis of the fractional calculus.
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Flowing from the above inadequacies, the Laplace transform of the fractional differintegral,
currently (Oldham and Spanier (1974)) given as

Ddf qlkf
L%d—m—s“L zsk e O, (18)

is found to lack sufficient generality in the initialization term(s) for many applications.

The objective of this paper is to provide a formalized basis for the initialization of the
fractional (generalized) calculus so that it may be readily accessible to the sciences and
engineering. In particular, a set of definitions will be provided which formally (explicitly) include
the initialization functions. Conceptualizations of fractional derivatives and integrals will be
shown. Applications and physical examples of the basic elements (many drawn from electronics)
will be presented along with examples from dynamics, material science, and more to indicate the
broad application of the theory. Also, the fundamental criteria for a fractional or generalized
calculus established by Ross (1974) will be investigated. Those criteria which apply to the
proposed approach will be proven and rationale for compromising/generalizing those remaining
will be given. The Laplace transform of the generalized differintegral will be derived. Finally,
some physical conceptualizations will be given for fractional differintegration and some
applications will be used to demonstrate the mathematics.

The authors have attempted to write to both the mathematics and the engineering/scientific
fields. Thus, the engineering reader will find familiar block diagrams associated with the
mathematics and, hopefully, the mathematician will find sufficient rigor in the proofs.

2. Motivation for Initialization

In real applications, it is usually the case that the problem to be solved is in some way
isolated from the past. That is, it should not be necessary to retreat io time to start the
analysis. Usually, the analyst desires to start the analysis (for instance, in the case of a system of
ordinary differential equations (ODE's)) at some time,tgayith knowledge (or assumption) of
all values of the function and its derivatives. Specificail@,o), f '(to), f ”(to),...f (n) (to) in the
case of ODE's. In modern parlance, this collection of constants is called the Stgttsand
contains the effect of all the past history.

The desire to initialize fractional ordinary differential equations (FODE’s) or a system of
FODE's continues to exist in the fractional or generalized calculus domain. To understand the
application of fractional calculus in terms of fractional or extraordinary differential equations, the
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authors considered a system (Hartley and Lorenzo (1998)) which can be described as a semi-
differential equation or semi-integral equation. Physically this system is the semi-infinite lossy
line, which is described by a diffusion equation of the form

av((;(,t): . azgif,t)’i(x’t):_%%, v(0,0)=V(t), v(,t) = 0, V(x0) given. (23

Here, v is the voltagei, is the currenty, (t) is a time-dependent input variable, ands a
constant, which is one over the product of resistance per unit lengthg capacitance per unit
length, c.

One way the behavior of the semi-infinite line can be described is in terms of its input
behavior (impedance) at the open end of the line, that is, as a semi-differential equation.
However, to practically use such an FODE to describe the behavior at the input, requires the
addition of a function of time. In terms of the physics, this time function relates back to the initial
voltage distribution (distributed initialization) on the semi-infinite lossy line. The details of this
derivation are given in Hartley and Lorenzo (1998). The primary result for the voltage at the
input of the lossy line is given by

rI (Qs)

e

whereA is a dummy variable of integration asds the Laplace transform parameter.

e( V(A 0) A (22

Equation (2.2) was determined using a conventional iterated Laplace transform approach
applied to the diffusion equation. However, an attraction of the fractional calculus is the ability to
express the behavior of the line (a distributed system or mathematically partial differential
equation) as part of the system of distributed equations using fractional ordinary differential
equations (FODE’s). Such a fractional (extra)ordinary differential equation for this application
would be of the form

dl/ZV t ]
dtl/g ) = r\/al(t) ' (23)
assumingv(x,o) = 0. To initialize this distributed system, a function of ting&t), must be
added to account for the integral term in equation (2.2). Thus,
dl/ZV(t)

Iz +y(t) = rai(). (2.4)

The focus of interest is the integral termyoft) of equation (2.4). Clearly, one can addend
such terms in an ad hoc way to the FODE's which are being solved. However, it is the authors’
opinion that a better approach is to formally include an initialization fundafiét),, in the
definition of the fractional differintegrals. This is the approach that will be developed later in the
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paper. Clearly, if the analyst is constrained that the initial function value and all of its derivatives
are zero, the range of applicability for this entire class of problems (which will probably include,
eventually, all distributed systems) will be greatly limited. It is the authors’ contention that all
fractional ordinary differintegral equations require initialization terms to be associated with each
fractional differintegral term, in order to complete the description. Indeed it will be shown that
some ordinary differential equations (i.e., integer order differintegrals) may require a
@(t)initialization. This requirement is a generalization to the requirement of a set of
initialization constants (the state) in ordinary differential equations. Fundamentally it is the
information required to start the integration process of the differential equations while properly
accounting for the effects of the past. Before presenting the formal definition of this generalized
calculus, it is useful to examine some interpretations of fractional differintegrals.

3. Conceptualization

The interpretations of fractional differintegrals presented in this section are based on the
contemporary definitions see, Ross (19949 Oldham and Spanier (1974). The extensions of
these interpretations to the definitions that follow in this paper will be obvious.

3.1 Riemann-Liouville Differintegral
3.1.1 Interpretation 1

The Riemann-Liouville definition for the fractional integral is
d 1 . 4

— f(t)= t-1)" f(r)dt g=0. 311

g O e (3119

This definition is extended to fractional derivatives by simply differentiating; thus
dm—qf 1 dm t q-1

[d(t-a)]™" (g dtI -7) ar 920 Mg (3113

and m is an integer.
A graphical display of the semi-derivative and semi-integrat (¢j = cos(O .47Tt) IS presented
in figure 3-1-1. For this casea= 0, and equation (3.1.1.1) becomes

0 f(t) _ 1 ‘cogoam)

[ 'rggf (1)

(3113
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Plate (a) of figure 3-1-1 shows the fixed part of the integrand; this is unchanged for all semi-

integrals regardless of (t), t is a parameter on this plot.

Plate (b) is the time function to be semi-integrated, plotted as a functionTdfe complete
integrands, which are the product of the functions in plates (a) and (b) are as shown in plate (c);

again various values dfare shown as parameters. The semi-

integral, plate (d), is the locus of the

values of the integrals of all parametric valuesasg shown in plate (c), (and more). The semi-

derivative is obtained simply by differentiating the half integral, and is shown in plate (e).

time, t

(ner-nubsy = =
neld,p Olsoa=(ne

— = —_ > ] ] —

(neryubsiineny "
(14 4o |eaBaiu) yey

(1} 4o aniestap JeY .

time, t

Figure 3-1-1.—Interpretation of fractional differintegrals based on Reimann-Liouville definition.
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3.1.2 Interpretation 2

The Riemann-Liouville integral can also be viewed as a convolution integral as

dof(t) _ e 8 1 g1 f(r)dr
fae-o)* - MO T rgleo

In this instance bottf (t) and h(t) =1/T (g)t*** are considered to be causal (i.e., no convolution
response can be obtained befdig)is applied), andrepresents the convolution operation (see
for example, Churchill (1958)). An excellent discussion of this interpretation of the convolution
integral is given in Gabel and Roberts (1973). This viewpoint is reflected graphically in figure 3-
1-2 where agairt (t) = cos(O .47'[t) andg= 05. Here, plate (a) showr) versusr , the negative
function h(- 1) is shown in plate (c), ant(t—)for t =5is plotted on plate (d). The function

f(r), to be fractionally integrated, is presented in plate (b). Plate (e) shows the full integrand,
h(t-1) f(r) for t =5.0. Finally, the integral of this product becomes tt5.0 value of the
fractional integral, plate (f).

q= 0. (312)

Plate ai Plate hi

1garmmal 5] sqriitau)
cos( 4 pittau)

fitau)

[y}
.
-

hitau)

MEr-=-=a----
—a
[

=
o

= =]
e I =
= 5
z X 2
oy f[tau):*h(t-tau): : \v/ =
= 1 1 1 [Z‘tau] %
=2 : : - -
& -0 - 0 5 10

tau

Figure 3-1-2.—Riemann-Liouville integral interpreted as a convolution integral.
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3.2 Grunwald Differintegral
3.2.1 Time Delay /Conveyor Interpretation

Another, more physically based, interpretation of a fractional differintegral can be made
based on the Grinwald definition. This definition, considered as the primary definition by
Oldham and Spanier (1974), is given as

+q

d9 f(t) N

BV o
ate-ap,, =™ T ey B (s21]

where q< 0 indicates fractional integration amg> O indicates fractional differentiation.
Understanding of this interpretation will be increased by studying a particular case. Consider the
much simplified approximation to equation (3.2.1.1)der 1/2,N = 4. Then from equation

(3.2.1.1)

GRUN

m(-1/2) (04 0

DD r(y) B

_ﬂzu_(l/Z) 0 m-a O

e Had or@ A° QT@E
[d(t—af)])”D 1 Er(s/z 0 f-am 2° (3212

b r@ - 2

U 0

o(/2 .0 -a 0

H

s
"
H35

[

r(4) 4
Each of the function evaluations is a time delayed evaluatidr{tdf Further, each of these time
delayed functions is multiplied by a constant, Whicﬁﬁsj; —q)/ F(— q)l‘(j +1) and also multiplied

_af”
by EITQ :

In diagram form, it is seen that the base functfd) is evaluated unshifted and
progressively time-shifted in increments(§f - a) / N) for (N —1) many times. In this case the
diagram is as shown in figure 3-2-1. Thus, the semi-derivativijfis seen to be a summation
of progressively delayed evaluations bft) multiplied by progressively decreasing constants
and finally multiplied by 2. Now N =4 is a very crude approximation to the semi-derivative

and equation (3.2.1.1) calls for the limit Bsapproaches infinity. It is instructive to alloW to
approach infinity.
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> - dv2f (1)
. [d ¢t-a)]"

[ e : )@

DELAY BY DELAY BY DELAY BY

_ t-a t-a
f () 9= f (o) 9= f (t-20) 0= f (t-30)

Figure 3-2-1.—Time delay approximation to semi-derivative.

The following case is considered=1/ 2, N =10,000 Then equation (3.2.1.1) is much
more closely approximated by

r(-1/2) O

o= f()+ 0

o r@ 0

r(1/ 2) o%’ O

e ooo .

_ 0

Ei‘(3/ 2) _ZQ%O%"L .

] r 000 B

o O : 0

oty B E

d 000 D’ j- 1/2 D 0% O
0 0. 321
[dt a] 2 %1@ Oor ]+1) E 000 0 ( 3

20 O : 0

D 0

t_
999 fE 999%0000%+D
99985 t-a
oo 1 -ssad] o il
or (10009 E[ 000

0

U
u

T:J

|

It can be seen by comparison with the previous approximation, that the gamma function
based coefficients are the same for the fisterms. The time shift factor (incremental delay)
((t-a)/ N) is of course very much smaller and indeed approaches z&tagaes to infinity.
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A diagram for this approximation is given in figure 3-2-2. The diagrams of figures 3-2-1 and
3-2-2 are easily associated to a physical interpretation by considering the behavior of a conveyor
figure 3-2-3(a). The analogy considers a conveyor with some material (e.g., sand) dropped from
a hopper to the conveyor surface. The height of the sand on the conveyor is rdlétkd to
Height sensors are evenly spaced such that the time for the conveyor to move the distance
between two sensors is=(t —a)/ N when the conveyor moves at sp&t). The figure shows
a time functionf (t) and its shifted counterparfgt - o), f(t - 20).......f (t = (N - 1)o). The
outputs of the height sensors are multiplied by appropriate gamma function coefficients as in
figures 3-2-1 and 3-2-2 and summed, etc. The result of the summation then is the fractional
differintegral. This analogy evenly distribut®s sensors between=0 andt =t, therefore the
spatial spacing changes emcreases.

An alternate conveyor analogy allows a fixed spatial distribution if in the Griinwald equation
(3.2.1.1) the substitutioll =(t—a)/ AT is made. In the limit adT — 0, ATis always chosen
so thatN is an integer, then this gives

e @OT) N T(j-q)
DI (1) = lim q) ,Z (i +1) f(t- j(aT)). (3214

This situation is indicated in figure 3-2-3(b). Assuming no initialization, the sensors at

f(t — mo) at timet = 0 will show no output. It is clear that preloading the conveyor to the right
of the zero point is the same as initializing the differintegral and is the same as extending the
function backward in time.

’O .- d?2 £ (1)
[d (t a)]i/z

-1/2

r(-1/2)
F(=1/2)T (j +1)

r(-1/2)
F(-1/2)r ()

r(1/2)
F(=1/2)r )

I (9998.5)
I (-1/2) [ (10000)

DELAY BY |
o)

DELAY BY
o) f (t-99990)

DELAY BY DELAYBY | .
f() o) tt-o)| O f (t-20) f (t-jo)

Figure 3-2-2.—High order approximation of the semi-derivative.
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. JORIEREE
Veonveyor = 1t/ second
——
O O O O O O O O 0O O
|—>t:0
L {1000 sensors
[lj—“—\

—
O O O O O O O O 0 O
|—>'[:1
L ...-{1000 Sensors
i .
ARRRRRRRRRRRRANAIY
\
O O O O ©O O O O 0 O
|—>t=2
L ..{1000 Sensors
- A .
frrrrrrrerrrrrrerrenl
—‘;
O O O O O O O O 0 O
—t=4
L {1000 Sensors
N
T Y I Y Y A
—
O O O O O O O O 0O O

Figure 3-2-3(a).—Conveyer analogy: Fixddhere n = 1000, sensors uniformly spread
between 0 ant spacing varies with
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LJ f(t):{ﬁ, 05t { Uniformly Spaced Sensors

O
I N R A A R R A R A A R A
Veonveyor = 1t/ second
—
O O O O O O O O O
— t=0
LDJ { Uniformly Spaced Sensors
I N R A A R R A R A A R A
>~
O O O O O O O O O
— t=1
LI:IJ { Uniformly Spaced Sensors
I O e A I I A A A I R
‘ ——
O O O O O O O O O
|—>t:2
LEIJ { Uniformly Spaced Sensors
I O e e e I R A O
|
O O O O O O O O O
—> t=4
LDJ { Uniformly Spaced Sensors
I N R A A R R A R A A R A
l
O O O O O O O O O
|—>t:6

Figure 3-2-3(b).—Conveyer analogy:variable int, fixed in space,
sensors uniformly spread in space.
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A third conveyor analogy is possible. In this case the weighting sensors are evenly distributed
and fixed in space. For this case the velO¢(ty of the conveyor is not constant. It varies from
infinite speed at the staft = 0), to zero speed at= » , in such a manner as to satisfy the
required time delays. (No figure shown.)

3.2.2 Geometric Interpretation of Fractional Differintegral
A geometric conceptualization may be obtained based on the Grinwald definition. Namely,

.Df(t)= I|m (rt'za)qq)’\ir j+1 - Jg—% (3221

For simplicity we will writgt —a)/ N = AT, then sinceN — o, asAT - 0,

“or(j-q)  f(t-jaT)
<, F(— q)r(j +1) ATS

a th f (t) = Al'irrPO

(3222

The nature of the definition may be explored by considering the adjadcanand
(j +1) thterms. In a general sense if the terms are additiveja@, then an integration is being
effected. If the terms are differenced apd O then differentiation may be suggested. Then

(t)= im b+ r(j-a) f(t-jar) r(i+1-a) f@—(j+ﬁAT)+u”%
a Dy soog  T(-gr(j+1) aT®  r(-gr(j+2)  ATd 5

(3223

Dividing through by the coefficient of theth term, and combining thigh and(j +1) thterms
gives

Of (t — O
,Df(t)= Imw% +oz”f(t JAT)+ﬁff (J+QAT%L~HE, (3224)
AT - oa E AT E a
where
r(j+1-a)r(j+y _r(j-q) i=12..

“(j-q) r0+2)fmda_r(—@rﬁ+g’
and a is the coefficient of thg th term. Plots ofa and 3 are presented in figure 3-2-4. Now
using the gamma function relationships this may be simplifieﬁhc(j —q)/ (j +1) when
j-qg>0andj+1>0.

We now restrict our attention fic> g = —1. Then the simplification fof3 substituted into
equation (3.2.2.4) holds for all terms wifl» 1. Further, under thq restriction, 3 is constrained
to the range o1 > 3 > 0 and =1 whenqg = —1and approaches 1 gs- « for the remaining
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values ofq (see fig. 3-2-4). Thus, it is seen that so long as the terms gboteexist, B will

always be positive; hence the signs of the adjacent terms will be the same. Therefore, all of the
considered cases will involve integration processes! It is noted that the sigardy influences

the sign of the resulting value of the integration.

1

gammal-ql{gammal-g*gammalj+17)

alpha

0 10 20 3o 40 50
integer, |

Figure 3-2-4.—Plotsoh =r(j-q)/r (-q)r  +1)
for variousj andg = ( —q)/(j + 1) versug.

Now equations (3.2.2.2) and (3.2.2.4) are applied to consider four special cases.

Casel:q=-1

Now g=-10 B =1, anda =1; further, equation (3.2.2.4) holds for gll Equation
(3.2.2.4) then simplifies to

D7 1(0)= lim {-+aT[ £(t- jaT)+ £(t-(j+DaT)]+-- | (3229

which is readily seen to be two terms of a conventional integration.
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Case 2:q=1
Whenqg=10 a =0for all j except= 0 andl From equation (3.2.2.2), the= 0and
j =1 coefficients are determined to be 1 and -1 respectively, giving
Of (t) - f(t-AT)O

PN
D ()= Jim 5 AT n (3226)

which is the definition of the conventional derivative.

Case 3:0=2g>-1

For simplicity we will start withq=-%0 B, = (i+%)/(j+1); thus, for all
j=00 1> ,B_y2 > 0. Here 8 has been subscripted to indicate the valug.dt is also true that
1= a > Ofor all qin the range (fig. 3-2-4). Thus,

aDt_%f(t):A”Trf‘{ o+ AT%[f(t— iAT)+B.,, f(t—(j+1)AT)]+...}, (3227

{
and for a generadin the range
D (t)= lim{--+a AT 1(t- aT)+ g, f(t-(j+D)aT)]+-}. (3228

Thus, since botlw and 3 are always positive, this summation will be seen to be an integration
process (fractional). A geometric approximation to this integration is shown in figure 3-2-5(a).
Considerg=-1, thenz a f(t-AT)AT is an area represented by that area beneath the

a f(t - jAT) curve. If g is taken as- 2 (outside the domain of consideration here), then

> a f(t-AT)AT? would be a volume. Then the seridsa f(t—AT)AT™ for 0= q>-1may be
thought of as a “fractional area” (or “generalized dimension”).

AT 5 -

|

— | 4@ f(t ~ JAT)

~a

T T T TT

N—-1o00e oooZlO:j
a t

Figure 3-2-5(a).—Geometric interpretation of fractional integration; integral is
area undegf(t —jAT) curve multiplied byaT **.
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Case 4:1>q=0

Again, for simplicity, we will start witfg = 2 and generalize. Far=0 B, = (i-%)/(i+1),
here forallj =10 1> ,B% > 0. It can be seen th@ will be positive for allgwhen j >1. Itis also
true that O a > - Tor all gin the range (see fig. 3-2-4).
Thus,

_DEF(t)= |im{...+a AT-%[f(t— jAT)+ B, f(t—(j+1)AT)]+-~-}, (3229

AT -0

or in general forgin the range
D01 (1) = lim {--+a AT £(t= jaT)+ B, #(t-(j+D)aT)] . (32219

So, after the firstj = 0 term, it is seen that all terms again are a direct sum of negatively
weighted functions, again an integration process. However, the effectiveness of the weighting
AT “%is changed since nog> 0. The first j =0 term for allq is AT f(t); thus, considering

the first two terms (eq. (3.2.2.2)) yields

OfE)-afE-AT) . O

q =i
DAt (t) Al;rpog AT +0 (3221)

This brings in an effective differentiation (fgr> 0 ) though scaled bAT “instead ofAT as in
the case of order 1 differentiation. Therefore, fractional differentiation may be viewed as a
combination of integration and differentiation.

If qis taken as 1 in equation (3.2.2.2), then, of course, the equation returns the rate of change
of the function. Taking a value @f=2 for the exponent oAT (outside the range of
consideration), then equation (3.2.2.2) yields precigélf// dt*, an acceleration. Thus, for
1> g= 0 the terms of equation (3.2.2.11) can be considered as a “fractional rate” of change of the
function. Figure 3-2-5(b) shows the=0andj =1 points of a geometric approximation to the
qthfractional derivative. The slope between the curves multipliedby* is, loosely, a
geometric interpretation for this part of the fractional derivative or “fractional rate”, the
remaining terms are interpreted as in figure 3-2-5(a). Of course, this interpretation becomes
meaningless in the limit a&T - 0.

qf (t - jAT) surface
‘ f(t-AT)

Figure 3-2-5(b).—Geometric interpretation of fractional differentiajen0= j = 1.
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3.2.3 Geometric Interpretation

Considerable insight may be obtained from the examination of adjacent terms of the
Grunwald definition of the fractional differintegral. The geometry of both fractional integration
and differentiation at the infinitesimal level are contained in the form

Of (t - jaT) + B f(t-(j +2)aT)2
a@ AT @ (32.31)

The graphical interpretations are as shown in figure 3-2-5.

4. Definitions for the Generalized Calculus
With Initialization Functions

In view of the motivations presented in the earlier sections of this report and the desire to
apply the fractional calculus to many practical applications, the following definitions are offered.
Discussion will begin with a consideration of the Riemann-Liouville integral. In the development
that follows, attention is restricted to real values of the orgleof the various differintegrals.

4.1 Riemann-Liouville Basis

Two types of initialization are considered. In the first type it is assumed that the differintegral
operator can only be initialized ("charged") by effectively differintegrating prior to the "start"
time, t = c. This will be callederminal charging(terminal initialization) by analogy to the
driving of a distributed semi-infinite electrical line, at its open terminal, by a driving function

f(t), for (a<t<c). This is contrasted tside chargingside initialization), the second type of
initialization, where by similar analogy a fully arbitrary initialization may be applied to the
differintegral operator at timé= c. Side charging is analogous to setting an arbitrary (voltage or
current) distribution on a distributed semi-infinite electrical line.

Terminal charging is considered first. It is assumed that the fractional integration of interest
"starts" att = ¢ (i.e., point of initialization). Further,f (t) =0 for all t < a, and the fractional
integration takes place far>c=> a.

The standard (contemporary) definition of a fractional integral will be acceptg@hen the
differintegrand f (t) = Ofor all t<a.

Then,

DY f(t) = ﬁ (t-7)"* £(1) dr, v2 0, ta (419

Y S
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subjecttof(t) = 0 for all t< a The following definition of fractional integration will apply
generally (i.e., at any>c):

1

DY () = o)

(t-1)" f(r)dr +y(fvac), v20 & ¢ (412

P W

czaand f(t) = 0 Ot< a.

The functiont,u(f ,~V, 4, C, t) will be called the initialization function and will be chosen such
that
2D (t)= DO f(t) for t > c. (413

Mathematically, then, fot >c andv=0,
t

DV f —(ilt )7 ( = D' f —lec' )t (r)dr +g(fv,ac). (414)

t

c t
Clearly, sinceIf(T)dr = f(r)dr +f f(r)dr

w(fvac) = ,D)f(@Y) = %!(t—r)“f(r)dr t>¢ v>0. (4.15)
This expression fog(t) applies only for the terminal charging condition. Cleaglybrings to
the definition of the fractional integral the effect of the past, namely, the effect of fractionally
integrating f (t) from a to c. This effect will, of course, influence behavior after the titvec.
The ¢ function has the effect of allowing the functidit) and its derivatives to start at a value
other than zero, namely, the value

2D (t) |,

and continues to contribute to the differintegral response tafter. That is, a function of time is
added to the uninitialized integral, not just a constamnt=at .

The integer order integrals under terminal charging are of special interest. Evaluating
equation 4.1.5, for example, for=1, indicates that//(f —1, a,c,t) = constant. The general case
is readily shown to be

L,U(f,—n,a,c,t):iqf : n=123:-

This, of course, is the same effect as seen in the integer order calculus using the “constant of
integration.”
When side charging is in effect as opposed to terminal charging, then,

w=u(t) (i.e., is arbitrary .
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It is important to note that the initialization of thi fractional integral off (t) is not unique in
the following sense. That i§(t) can be considered as a composite function, for example,
f(t)=g(t)u(t-c)+HH(U(t- & - U(t- g), whereU(t)is the unit step function

t<O

t>0.

U(t)=élo

Then for this composite functiofi(t), it is the functiong(t)U(t - ) that is being
differintegrated andh(t)(U(t- a) - U(t- d))is the function on which the initialization is based.
This is analogous to choosing an arbitrary constant value to initialize (the integratay oif)

in the solution of an ordinary differential equation. The point is that in many (perhaps most)
applications it will be the analyst's choice as to hGi(U(t - a) - U(t- ¢)) will be chosen in the
initialization of _D;" f (t) . In many cases, for example for the integer order (differintegrals)
calculus as considered in the contemporary contét= constant will be the appropriate
choice. Issues of discontinuitiestat c of course must be addressed.

To extend the definition to the fractional derivatives, some issues must be addressed. The
definition of the fractional derivative raises the following important questions in the context of
initialization. Do fractional derivatives require an initializing function in general? Further, do
integer order derivatives in this context require initialization functioGgarly, as we
commonly think of derivatives, in the integer order calculus, the derivative is a local property and
is represented geometrically as the slope of the function being considered and as such it requires
no initialization. In the solution of differential equations the initialization constants which set the
initial values of the derivatives really have the effect of accounting for the integration of the
derivative from minus infinity to the starting time of the integration (of the differential equation).

The authors’ study of the semi-infinite bar dynamics (Hartley and Lorenzo (1998)) together
with implication from the conveyor analogy based on the Griinwald definition of the fractional
derivative, indicate that the fractional derivative is not a local property as appears to be the case
for integer order derivatives (in the integer order calculus). Further, if it is desired to use the
fractional calculus (and hence the fractional derivative) to write FODE's such as that representing
the input behavior of the semi-infinite bar, then an initialization fundsioequired to handle the
effect of the distributed initialization (initial strain distribution in the bar). The input
characteristic (for displacement to force) in this cagd#f (¢)/ dt (that is, an integer derivative
but in a fractional context). Therefore, in the opinion of the authors, the answer to both questions
is clearly, YES. Physical examples will be shown later in this paper to further justify this
position. The impact of this is to require an initialization function for the fractional (and integer
order) derivatives.
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Thus, a generalized integer order differentiation is defined as

cD?“f(t)Eg—;f(tH L,U(f ,m,a,c,t) t>c, 416)

wherem is a positive integer and whea;e(f ,m, a, c t) is an initialization function. This is, of
course, a generalization of the definition of the derivative, and for many cases, for example,
usually in the integer order calculug,will be taken to be zero. It will be shown in a later section
that, for m=1 with the condition of terminal chargingl,(f ,1,a,c,t) =0.
Now theuninitializedgeneralized (fractional) derivative is defined as
.Dif(t)=,D" D Pf(t) =0, t>a,and f()=0 Ot<a (417)

and (for conveniencen is the least integer greater thaqrandg= m- p Now as in the
fractional integral casgy (f — P, a,a, t) = 0. Further, sincgy (h, m a a t) =0, where
h(t)=,D; " f(t), this definition specializes to the contemporary definition of the fractional
derivative.

Now theinitialized generalized (fractional) derivative is defined as

Dif(t)= .DM.DPF(t) qg=0, t>c2a, (418)

where (for conveniencah is the least positive integer greater tlgpgmd g = m— p.
The initialization of the fractional derivative under conditions of terminal charging will
proceed in a manner similar to the fractional integral, that is, it shall be required that
DI (t)= D3 (t) Ot>c  with g=0. (419

Specifically, this requires compatibility of the derivatives starting-ah andt = c, for t >c.
Then it follows that
D" D Pf(t)= D", D Pf(t), q>0, t>cza (4110)

Expanding the generalized integral terms,
t

CD{“%I(t-T)p—lf(r)dr +y(f-pac t)é:

C

01 ¢ - 0
D"O——((t-7)""f f - 0 : 4111
. tDF(p)!(t )" f(r)dr +y(f, p,a,a,t)D, t>c  (4111)

Sincey (f P, a,a, t) =0 and using the definition (eq. (4.1.6)) for the integer order derivative,
equation (4.1.11) may be written as

%%i(t—r)p'lf(r)drﬂﬂ(f,— p,a,C,t)Eﬂ.U(h’ mac)=

d™ 1

Wmf(t-T)p'lf(T)dT +y(h,maal, b6 @4112)
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whereh =_D; " f(t) and h,=_,D; " f(t). The integer derivative is uninitialized &t a, therefore
t,u(hz, m a, ﬁ =0. Then combining integrals gives

(h1 m,a,c, dt %_—J't— )P £ (7)dr - L,U pacﬁ% t>c @113)

Under the condition of terminal charging of the fractional integral (eq. (4.1.5)), the argument of
the derivative above is zero thus(hi, ma, G t) =0and it is seethat integer differentiation
cannot be initialized through the terminal (terminal chargedjhis feature will also be
demonstrated in the applications section to follow. For the case of side cha(g‘ingp, a, C, t)
is arbitrary. Thus it can be seen from the above equation that either
L,U(f —Pp,a,c, t) or l,U( h.ma C) can be arbitrary but not both while still satisfying the
requirements of the initialization (eq. (4.1.1.3)).

Thus, the generalized (fractional) derivative, side charging case, can now be stated as

Il
FJ’ t-1 T)dr +¢,U( p,a,qt)D, g=0, t> ¢ @114)
O
and m isthe least positive integery  witte m- por equivalently as
m 1 t 1 dm
DAf (t-1)" —y(f,-p.act)+y(h, 0 @114
dt (o j r+ (f-pac)+y(hmac) @0 @1149

C

wherem is as aboyeé>c, and)=_, 0" (1.
In the case of terminal charging of the fractional integral part of equation (4.1.14)
l,U(f ,—Pp.a,c, t) will be as defined by equation (4.1.5).

4.1.1 Simple Example

A simple example will be helpful. Consider the semi-integraf @) =(t —a)u(t — a) , then
for the uninitialized semi-integral (Oldham and Spanier (1974) pp. 63-64)

(t-a)™ _ (t-a)"

a DAt - -a) = = =~ 0.7522%t-a)*” 411

DY3(t-a)u(t-a) F(2—q) (25 0.7522%t-a)" ", t> a (4115
Now, initializing from the point = ¢
t

DV (t-a)u(t-8) = - Z)Jc'(t-r)'ﬂz(r—a)dr +w(f-1/2,ac), t> ¢ (4116

and,

D3 (t-a)u(t-a) = ((t-c)”2(2t+c-3a)) +p(f-1/2ac), t> c(411]

3r(1/ 2
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Consider now the terminally charged initialization,
Cc

1 T
w(f-1/2a0c) = r(1/2)‘[(t )r-9d, t> g (4118)

a

_ 2 12 V2
w(f-1/2,a..1 “TW?I [(tc) (2t+3a-9 {t- 9" (- 2t+ 25)] ., t> c. (4119
For specific numerical values, for exampées -1, c=1, the above results give
1DY¥(t-a)u(t-a)= 0.7522%t+ )**, t>- 1

D¥3(t-a)u(t-a) = %((t )3 (2t+ 4))+Lp(f,-]j 2-11), t> 1 (4120)

with

w(f-1/2-111) = (-(t—1)”2(2t+4)+(t+1)“(z+3), t> 1 (412)1

iy

The numerical evaluations of these quantities are shown in the graphs of figure 4-1-1. It is
observed, at least for this case, that
limy (f,-v,a ¢ 1)=0. (4122

t o0

Further, fort > c=1, /(t) appears to decrease monotonically.

~

M Dt_]jz(t B a) :adt_ﬂz(t - a)

a

- cdt_ﬂz(t_a) /./'I

s ly(t-a,-1/2,-1,1,1) '

—— D "*(t-a) /.'
|

D

al

LN

w

N

Semi-Integrals & Initialization Function

.
. A
1 6“ .5AAA7$AAA
‘o»’ ;- ABMAANAAAAAA
.
"

‘P—‘A“\ 0 T i T T
-1 -0.5 0 0.5 1 1.5 2 2.5 3

Figure 4-1-1.—Sample problem: semi-integraltof &) versus Time, witla = -1,c = 1.
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Summary of Definitions

Thegeneralized (fractional) integralforv arbitrary, real, and non-negative:

D f(t) = % f(t-1)* f(r)dr +y(fv,aac), v20

(4123
t>czaand f(t) =0 O t< a.
Thegeneralized integer derivative:
dm
D f(t)y=——f(t)+ ¢(f,m,a,c,t, t>
rim =m0+ o G (412

wherem is a positive integer and thféf,m,a,c,) is arbitrary.
Thegeneralized (fractional) derivativeqandp real:

%ﬁ[(t—r)"‘lf(r)dr j'mw(f paci+y(hmac),#125)

wheret >¢, h=_D"f(t),g= m- p>0, p>0 and m is integer.

Cth ECDImC Dt_p f (t):

General casside charging
w(t) is arbitrary.

Terminal chargingcase for generalized (fractional) integral:

w(f-vac) = DY) = %}(t-r)“f(r)dr t>¢ V20 (4126

for integer derivative
w(h,ma ¢ 9=0. (41.27)

4.2 Grinwald Basis

This discussion parallels that for the Riemann-Liouville basis. Again the "starting” time for
the differintegration ig = c. An initialization is introduced to account for previous history and
goes back ta =a, with f(t)=0 for all t < a. Then for arbitraryq,

—ar®
L EIT wr(j-a), 0
= lim 9 Z F(i+1) fEt Jg—% t>a, (4.21)

1=0

DIf(t) = d?f(t)

[a(t-a)"

subject tof(t)=0 foralt<a.

GRUN

NASA/TP—1998-208415 24



The following definition of Grinwald differintegration will apply generally (i.e., atanyt>c > a):

d* f(t

DI f(t) = #L;RUN + s (f.9.a.c.Y (42.2)

[d(t=9)"

andf(t)=0, Ot< a, c= a.

Again ¢ (f,q,a, ¢, 1) is chosen such thad, f (t) will produce the same result @3 f (t) for t > c.
Mathematically,

DIF(t) = dif(t)  +¢ _(faac)=,D7f (), (4.23)

GRUN

forallt > cand f() =0 forallt< gandc> a.

Therefore,

Yern(f.aac )= DF F()- o (D)., - @24)
subject tof (t)=0 Ot<a ané&<c<t
or

Yoron(fraact)= o (D o= c & f(Yoain (425)

subject tof (t)=00t<a a<c<t.
Now substituting the Griinwald series definition from equation (4.2.1) gives

D?t aD 0

vo(f.aa0) I EDN H Nl‘lr(j—q)fEt _Et—aEl:E
= - J

BT &G+ 5 TEN B

m m

U

| 0 uiy
‘N'L'ILDr q) z (j+1 fg JDNZ% (4.2.6)

H

subject tot >c, and f(t)=0 forallt<a.
The above expression can be simplified greatly by making the delay increments in the two
summations equal, that isl, = ((t —c)/(t-a)) N,. Then after considerable algebra and
manipulation of indices
BaT "r(N,-1-q- )

we(t.aacy=lmEy D r(N, - )

where AT =(t-a)/Nj, t>c=> aandN; andNs are integers such thats= ((c —a)/ (t—a)) N.

F{t-(N,-1- j)AT}%, (4.2.7)
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4.3 Notation

It is important to clarify notation before proceeding further. The following notation will be
used in the remainder of this paper:

D f(t)=d7 f)+w(fa.acy), t> c (431)

where D f (t) represents the initializedth order differintegration off (t).
Thus,

()=

- = DI (1) noce 432
[d(t—C)]q ces c ( )| ( )

is an uninitialized generalized (or fractionagj}h order differintegral and is the same as defined
in Oldham and Spanier (1974) and Ross (1974). Its basis is either the Riemann-Liouville integral
(and successive differentiations) or the Griinwald series definition. The notational form

DI (L), (4.33)

is now used to represent the initialized differintegral, that is, it includeg fhénitialization
function. It is unfortunate that this form is widely used in the literature at this time to represent
theuninitialized differintegral; but it is the authors’ judgment that any confusion arising from
this change will be more than offset by the convenience of the compact notation. As described
aboveL/J(f .0, 4, C, t) is an initialization for thejth order differintegral off (t) where it is

required thata < ¢ and thatf (t)=0 fort <a. For conveniencql(f ,q,a,C, t) will occasionally

be replaced by(t) or L/l(f ,q,t) where the meaning is clear from the context. In similar
manner, d? f(t) will occasionally be replaced by* (t) .

5. Criteria for a Generalized (Fractional) Calculus

5.1 Ross’ Criteria

This section examines selected properties, which can reasonably be expected to apply to
fractional differintegral operators. A minimal set of criteria for a viable generalized calculus has
been established by Ross (1974b). Thisssatcepted in principle by the authasd is quoted
as follows:

The Ross Criteria:

“1. If f(2) is an analytic function of the complex variabl¢he
derivative . D f (z) is an analytic function ofv and z.
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2. The operation DY, f (x) must produce the same result as ordinary differentiation
whenv is a positive integer. I is a negative integer, say= —n, then
D f(x) must produce the same result as ordimafpld integration
and . Dy f (x) must vanish along with ita—1 derivatives ai = c.
3. The operation of order zero leaves the function unchanged:

D2 (x) = (). (511)

4. The fractional operators must be linear:
-Dyaf (X)+bg(X)] =a . D f (x)+b . Dx*g(X). (512)

5. The law of exponents for integration of arbitrary order holds
Dy DY f(x)= DYV f(x). (513

It is observed that the notatiqi)? f (x), is exactly that of Ross and refers to timénitialized
differintegral.

The requirement here is to examine the proposed generalized calculus against the spirit of
these criteria. It should be noted that there is a minor conflict contained in these criteria. Namely,
criterion 2 basically calls for backward compatibility with the integer order calculus while
criterion 5 calls for the index law to hold. It should be noted that, for the normal Riemann-

Stieltjes integration theory in the integer order calculus,
d™d"f(x)z d (Y= f( (5.14)

for all f(x) and allm. This is observed directly by application of the “Fundamental theorem” of
calculus (Apostol (1957) p. 215). This states that under appropriate conditions

[1@dt=1(0- (9. (515)

and it can be seen that the reversal of differentiation by integration really differsf {tgrby

f(c), that is, by the initialization. Thus, the fact is that the integer order calculus itself does not
satisfy all the criteria. The failure of the fundamental theorem to provide true reversibility of
differentiation by integration is handled in the integer calculus in an ad hoc manner, specifically,
by the use of the constant of integration and by the use of the complementary function in the
solution of differential equations.

The issue to be addressedDds: the initialized versions of the Riemann-Liouville and Griinwald
differintegral definitions satisfy the above criteri&thce Oldham and Spanier (1974) show the
equivalence of the Riemann-Liouville and Grinwald uninitialized definitions, and since the
Riemann-Liouville basis relates most closely to the classical calculus it will be the main
consideration of this effort. Further, since the focus of this paper is limitgdrtehe real domain,
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only the last four of the criteria will be considered here. It is noted that, at least for continuous
functions, the conditiorf (t) =0 for D t<a, att = a, is equivalent to the condition that is used by
Ross (1974a and 1974b), namelyt), f '(t), f"(t), ... f W (t) =0 forOn andOt<a.
A general consideration of the Ross criteria relative to the generalized calculus proposed here
allows the following to be established.
For f(t), f'(t), f"(t),...f™(t)=0 forOn and Ot< aand under the condition of terminal
charging, criteria 2,3,4,and 5 hold for ald? f (t), with t >c.
Proof: Since each criterion has been proven (Ross (1974a and 1974b)) for the uninitialized
differintegral under the conditior (t), f '(t), f"(t), ... f " (t) =0 for On and Ot<a . And
since for terminal charging, the generalized integer derivative becomes
CD{“f(t):%f(t), t>c, (516)
and further, becauaﬁ(f ., 4,8, t) =0 0O gthen,
D f (t) =D f (t)| ROSS (517)

(Note , D f (t)] nosshere represents the uninitialized differintegral). Hence, since all criteria hold
for ., D7 f (t)| nosswhen f " (t) =0 On andOt< a , and since
DI (t)= Dt (1), for allt >c and allq, (519

it follows that the criteria also apply to the initialized differintegral,
DI (1), for all g andt > c,

thus completing the proof.

The criteria are now examined separately, to detail the proof for each criterion, to determine
the implications relative to the initialization functiong ), and to determine the limitations for
the generalized case, that is, for the case of side charging and/or the case of an initialized integer
derivative.

5.2 Criterion 2: Backward Compatibility

The purpose of Criterion 2 is to require backward compatibility with the integer order
calculus. Namely, it is required that

0 df

o dat .

Dt f(t) = [or n=integet (521

n>0,

0
Hof e f(t,)dt . dt n<O,
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Ross (1974b) uses induction to prove compatibility for the uninitialized fractional integral,
thus whenv becomes a positive integar,

1'(
nf - n
=rwltT

produces the same resultmgterated ordinary integration. Now by definition,
t

1 n-1
DO = oy {(t-r) f(D)ar +¢(f-nacy, nxo, (4123

t>c>aand f(t) =0 0O t< a,

and since for side charging(f ,—N,a,c, t) is arbitrary, for backward compatibility (i.e., to satisfy
eq. (5.2.1)) it may be taken as zero. For terminal chardifi, can be defined to be identically
zero fora< t<c. Thus, backward compatibility is obtainable for the generalized integral when
vis a positive integer.

The backward compatibility of the generalized derivatiz¢ f (t), g> 0 to the integer

"§(t)

.. d . . .
order derlvatlvedT , whenq is replaced byn, requires that the zero property (criterion 3)

hold for the fractional integral part of equation (4.1.8). This property is independently established
in the next subsection and will therefore be used freely here. Then-a8, equation (4.1.8)
becomes

lim CDt“f(t):limOCD{”CD[F’f(t) q=0 t>c=a
g-m P
m d"
=D () =57 F(D+w(f.macy (522)

and for terminal charging it has been shown tpl(at,m, a, G, t) =0, and under side-charging
conditionsy is arbitrary and may be set to zero. Thus, backward compatibility for the fractional
derivative is obtainable.

5.3 Criterion 3: Zero Property

For criterion 3, it is necessary to prove that
DLF(t) = (1) (5.31)

Now, by definition, and using the Riemann-Liouville form for the fractional integral

g1 ! o d
0 = limO=[(t-1)" U .32
DY) = imBryf(t-1) f(Mar+y(f vacyd ¢ (532
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and for terminal charging

. H 1 . v-1 1 : v-1 O
= L%%[(t-r) f(r)dr +m{(t-r) f(r)dr%, and (533
D2 (t)= nng%it 1) (r)dr = ||m( Dy f(1)), t>c (534

Now in this form the differintegral has the initializatioh(t) = 0,for0t < a, that is,

t,u(f ,—V, 4,8, t) = 0. Now Ross shows by several methods that
t

. 1 v-1 _
Ivlm)m.!(t—r) f(r)dr = f(t). (535
Thus, it is seen that the initializing function does not affect order zero behavior of the fractional
integral with terminal charging conditions.

Approaching zero order from the derivative (positive) side, tagirgn— p=1- p, since
no generality is lost by takingh=1,

CDtOf(t):Iirré chf(t)zlimlc D! .D;"f(t) (536
q- p-
—|im£%it(t—r)p'lf(r)dr+4/(f— a,ct)Eﬂ,u(hmac) t ¢ 637)
=M e (o) hacy ' '
Then for terminal charging of the integer derivatiyéh ) =0 and for the fractional integral,
L,U(f pact (—J’ t>c, 638)
thus,
dQ 1 t 0
DY f(t)=lim— T)d d 539
D/ (t) 1dt[r p)! T% an (539
d t
d_'!: t>a. (5.3.10)

Under conditions of continuity of (t) and f'(t), the order of operations can be interchanged
and by the fundamental theorem of calculus

If r)dr = (1) - f(a)= (1), (5311)

since by definitionf (a) = 0, completing the proof. For side charging the zero order operation
will return

(DY (t) = () +y(t). (5312

That this is an acceptable and indeed important result will be demonstrated in a later section.
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5.4 Criterion 4: Linearity

Linearity becomes somewhat more involved with the presence of the initialization function in
the definition. The requirements for the fractional integral will be determined first.
The following two fractional integrals are defined:
1 . v
DY f(t) = m‘[(tr) Y (r)dr+y(f-v,ac, t> ¢ and (541)

c

Dig(t) = ‘o(r)dr +¢(g,v,ac,), t> (54.2)

W‘[(t-'[

wheref(t) = 0 Ot< aandd) =0 Ot< a

Now, fort>c consider

—

D; (bf () + kg(1)) = I 7) 7 (bf (1) + k ofr)) or +y(bf+ kg- v a ¢k
=%j(t—r) (Lj' r)dr +y(bf+ kg-v ac}. (643)

Now using the definitions from equations (5.4.1) and (5.4.2) to replace the integral terms in this
equation gives:

D (bf (8)+ k(D) = . O vac))+

k(chvg()—t/J(g,—v,ac))Hp( bf+ kg- vaclt * c (544

Clearly,
D,*(bf() +kd(9) = b O f()+ k 0" d ), & G (545)

and linearity is obtained if an only if
w(bf+kg-viac)= w( f-vack k( ¢ vagt * ¢ 646)

Fundamentally, equation (5.4.6) presents the requirement on the initialization of the individual
functions to produce the same result as that given by the initialization of the combined functions.
Extension of the linearity requirements to fractional derivatives, while not complex, is

simplified by use of the following shorthand for the uninitialized fractional integral,
t

d™ f(t)=.d° (t I q>0 (54.7)

C
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and

d™f(t) = d dtfm(t) , m> 0. (5.4.8)
The problem here is to show
D! (bf (t)+ kg(9) = b, O f()+ k. O 9, >0, t>c (54.9)

Using the definition for the generalized derivative (eq. (4.1.8)),
.D{ f(t)= D", DY f(t), t>c, (5.410)

wherem is an integer angn> v= 0 andr =m-v. Now, D" is an initialized integer order

m

. d I
mth derivative operator composed of two pagﬁ the normal derivative operator, and

L,U(hl, m) the initializing function. Also, for equation (5.4.10),=,d," (1).

For t > ¢, linearity holds when for equation (5.4.BHS (left-hand side) RHS(right-hand side),
where
LHS=, D (b f()+ kd}). (5411

By definition of the generalized derivative, with and v as defined above,
LHS=D"D (b f()+ kd}). (54.12)
By definitions of D™ and D™,
LHS = dm( dV( b )+ kg ))+¢/j( bf+ kg )) +( hin
=d™d™(bf(9)+ kd §) + d( bf+ kg~ y+@( h h, (5413
where h(t):adt‘v(b f()+ kd t))
Using the linearity of the fractional integral and the ordinary derivative
LHS=bd"d" f( )+ kd" d* g+ dw( bf )+ Ko) Mw( ,h)m (5414)

For the RHS of equation (5.4.9),
RHS= bD )+ kD §} (5.4.15

and by definition of the generalized derivative
RHS= bD' D" f()+ kD"D" ¢ ). (5.4.16)

Now, by definitions ofD™ and D™ and rearranging terms,

RHS= bd" d" {}+ kd @' @)+ bay( + W k@ 8)¢ ¢ ,pm gk, )mE4L7)
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where
p(t)=,d v f(t), and I(t)=,d ). (541%)

Therefore, linearity of the derivative requitddS = RHS, then from equations (5.4.1.4) and
(5.4.1.7),

d"y(of () + ko - Y+w(h M= bdy( - }+ kay( g I b p) ¢, m 6418)

and requires satisfaction of equation (5.4.6), linearity of the fractional integral. Equation (5.4.6)
can be differentiated to yield

d"w(b f()+kdd-v= bdy( t- y+ kdy( ¢ ), * ¢ (5419)

This result substituted into equation (5.4.18) gives the simpler requirement

wlhm=by(pm+ k(1M b ¢ (5420)

for the fractional derivative.

The results (eq. (5.4.6) and (5.4.20)) apply in general, that is, for side charging. When
constrained to terminal charging the conditions of equations (4.1.26) and (4.1.27) apply. Then the
linearity requirement for the fractional integral becomes

C

} ) (b f(r)+ ko)) o .f (L.f r)dr, (54.2))

a

and linearity is seen to hold for terminal charging. For the fractional derivative under terminal
charging conditions, the results of equation (4.1.27) are applied to both sides of equation (5.4.20)
to yield 0= 0O, and again linearity holds for terminal charging.

5.5 Criterion 5: Composition

Composition or the index law requires proving that
D! D) f(t)= D D} f(t)= D" £(t), t>c. (551)

The following cases apply
Partl: the fractional integral caseandv<0,
Part 2: the tools needed for remaining parts, specifically
.Df(t)=,D} D f(t)=,D%*, D} (t) for 1>q>0 and
D" D Pf(t)=_D™"f(t) =.D;" .D"f(t) for p>0andm=1 and an integer,

Part 3: the fractional derivative cageandv >0, and
Part 4: the mixed case with< 0 andv > 0. These will be discussed belohhe
integral case will be considered first.
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5.5.1 Part 1, Fractional Integration

For this part it is required to show that
D DV f(t) = DV f(t)=,D;" D", for u=0,v=0, t>c (5511)

¢t ¢

The left-hand side then can be written as

t T

D DV f(t) = %J’(t -7)"" Tlv).l.(r ~1,)" #(r,)dr,dr +
%j(t—l’)u_lljl(f,—V,a,C,T)dl'+L[I(h,— uac}, (5512

where h(t) is the input to (argument of) ™ that would be active during the time peria& t<c.
Namely, since they's are defined to be zero fax t<c, h(t) = ,d;* f(t) for a<t< c (refer
to figure 5-5-1).

The case of terminal charging will be considered first; here, ¥ar,

c

@(f,~v,act)= %‘!’(t -1)"7 f(r)dr

and

w(h-uaci= mj’(t - T)”_lmj[(r ~1,)" (,)dr,dr. (513)

(@) During normal function

o I R .
ol B

o—>
DD (1)
t>a

\ / \ /

(b) During terminal charging - initialization

Figure 5-5-1.—Mathematical block diagram composition of fractional integrals (eq. (5.5.1.1)
and (5.5.1.2)). (a) During normal function. (b) During terminal charging-initialization.
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Now, for f(t) continuous, the first integral in equation (5.5.1.2) is the uninitialized integral
product. This is shown to be equal to the uninitialized composition by application of Dirichlet’s
formula (see Ross (1974); also repeated in Appendix A). Thus equation (5.5.1.2) becomes

CD{“CD[Vf(t)=Cd{“"Vf(t)+ 1

Wj}(t -1) 7 (r-1,)" £ (r,)dr,dr +

ca

lr(V)-[ Jit- )7 (r-1)7 f(r)dr,dr. (5519

aa

Now working with the RHS and momentarily dropping the common integrands/drid’s
= dVE() + J’J’( Jardr + [[( ), d. (5515)

As long as the integrand is unchanged over the appropriate ranges, the first integral may be
partitioned as

tc crT
= df(t +”( Jardr + [ [( Jara+ [[( )d,d. (5516)
Now the first and third integrals can be combined to give

= d; TV f(t ”( )drdr+J’J’() (5517)

Replacing the integrands, thelll7 ’s, and switching limits gives
D" DY f(t)=.d; " f(t _[_[t—r“(r r,)" f(r,)dr,dr -

tr

; vl (t-1)7*(r-1)" f(r)dr,dr. (5518)

cc

Again, for f(t) continuous, the Dirichlet formula and transformation may be applied as done

above (and in Appendix A). Thus, the double integrals become
t

-u -v —u-v 1 U+v-
th th f(t):cdt f(t)+m!(t—1’) lf(T)dT_

) e
L fme) el = d”Vf(t)W(f,-u-v,ac)

a

= d f(t

D DV E(t) = D1, t>c, (5519

thus, completing the proof for composition of initialized fractional integrals with terminal charging.
When side charging conditions apply, if composition is required, that is,

D=0, t>c (65110

NASA/TP—1998-208415 35



then
A () +g(f—u-viag) =
1 T v 1
TJ— t— T I( ) ( )dT ar+ T
for t > c. Applying the Dirichlet formula and transformation (for continudug )) shows the

leading terms of both sides to be equal. This yields the following relation, which is required to satisfy
equation (5.5.1.10)

[t=0""y(f ~vacr)d+y(h-yack, 65111

L/J(f,—u—v,a,c;t)—(ij f-vactd+y(h-uac) bt c B65112)

5.5.2 Part 2, Mixed Generalized Integration and Integer Order Differentiation

The objective of this part is to prove that
DD Pf(t)= D;° .D"f(t), t>c, (5521

for p>0and form an integerm=>= 1 This is required to establish composition for the derivative.
Prior to the main goal of this part the following preliminary result required below is
established. Consider the following derivative, ferd> , a@dt > a,

.Dff (t)=,D;, D £ (t) = daD( VE(t), (55.2.2)
by definition of the derivative. Now
d 1 | B}
D flt ——[(t-1)" f(r)d 552
0= g €0 f@ar (5523

by the definition of the fractional integral. Assumiridt) differentiable and applying integration
by parts yields

1q t
DIt dE(t a) " f(a) 1

afr(r)d 5 5524
af remq) Trl-gtTI IO G829
_dHt-a)"f(a) f(a‘)+aDt‘(2‘q) f '(t)S (5525
dtD I'(2—q) 0
_ b DIt (1) L Q)(t;_az)“ (a) (5526)
By part 1, equation (5.5.1.9),
_DYf(t)=D*, D, DD f (t)+%. (55.2.7)
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Then, for I>q> Oand for f(t) differentiable, equation (5.5.2.2) may be written as

_ 2\«
_DIf(t) =,D}, D (t)=,D;9 D (t) Lt-a) @) (55.28)
r(L-a)
Under the condition thaf (t) =0 O t < a the last term is zero and fbr q >0, t> a
.Dif(t)=,D DI f(t)= DI D (t). (55.2.9)

as the final result. Note, this equation holds from left to right, but right to left fails when
_Dif(t)=0 or f(t) = constant. This completes the preliminary aspect.
Again, to establish composition for the derivative it is required to prove equation (5.5.2.1),
that is, the mixed case of integer order differentiation and fractional integration
.D".D;*f(t)= D, D" (t), t>c, (55.210)

for p>0and form an integerm=>1.
This requires that

Ar(.drf()+y(f-pac))+w(hmac)
AP amf()+y(f.mac))+w(g- pack, for & ¢ (5521)
where h(t)=, D, ® f(t) and g(t)=,D/" f(t) . For the case of terminal charging, it has been shown

that l/J(h, m a, G b =0 andL,U(f ,m, a, c t) = Ofor the integer differentiations. Substituting the
terminal chargingy 's for the fractional integrals gives

dan %ij(t -7)" £ (1)dr +i}(t —7)P f (r)drEl:
dt™ (7 (p)< F(p)a 0
1 dm ; d"
W{(t—r)pﬂw dr+ _e[ — f(r)dr, for t>c. (55219
Now, combining integrals of like integrands
d"d 1 4 0 1 5 d"
— O [(t-1)" f(r)drO=—((t-1)"" — f(r)dr, fort>c (5521
el (L e o (U0 (55213
or
D", D Pf(t)=_,D;",D"f(t). (55.214)

This conforms precisely to the uninitialized case, which now must be proved to establish the
initialized case.

The proof is started with the LHS of equation (5.5.2.14). Since for the uninitialized case all
¢'s= 0this may be written as

1 t
.D™ D Pf(t — . (55215
O
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Integrating by partentimes gives

L W@)t-a™ O
= .Dr" +, D £ (M) (1) 55216
a t%) F(p+k+1) a“t ()B ( )
By definition f(t)=0 O t<a thus f®(a)=0 for all k, therefore
=D, D" Dt (1) (55217)

since p>0, m>1, thenp+ m= ne 1. Let g(t)=, D" f(t) be a non-zero continuous functiontof
Then since the integral limita andt are differentiable functions of and sinca -7 >0 and
p+m-12 0 then(t - 7)™ g(r) and its partial derivative with respectt@re continuous in
botht andr. Thus Leibnitz’s rule may be applied to give

m-1 D 1 t d el D
— m ~(p+m) - d Y (i _ p+m- _ \p+ml
D Do) = g B [op (- 7) e + (-0 o) L0
dm—l
= e D; ("™ g(t). (55218

Under similar conditions Leibnitz’s rule may be applied a totah tfes. The non-integral term
will always be 0 by the above argument, thus

0
D1, D (1) =5, ()=, D, D7 £ (1) (55219

proving equations (5.5.2.14) and thus, equation (5.5.2.1)>as by definition of D3 f (t).
To establish composition of mixed differintegrals it is also required to prove thiat for
DI".D;*f(t)=_D""f(t) (5522@&) and ,D;* D" f(t)=,D""f(t). (55220)

For equation (5.5.2.20a) two cases are considered:

Casel:p>m
Then under the conditions of terminal charging the LHS of equation (5.5.2.20a) becomes

C

d"0 1 4 1 1 O
DD Pf(t)=—- (t-1)"" f(r)dr+—=[(t-1)" f(r)drCo (55.2.21)
P () (e ]
Now, p>mz1, therefore,p-1= 0 and sincet — 7 =0, the integrandt - )" f (r) and its
partial derivative with respect tois continuous in bott andr, provided f (t) is continuous.
Then Leibnitz’s Rule may be applied to the combined integral of equation (5.5.2.21) to give

:d—Mti(t—r)p_lf(r)dr (55222
dt”*lJ; Jt '
or
dgmt (p—l) t - dgmt (o)
_ ) ((t - LI _ 5.2.2
at™ () _!(t )" f(r)dr el f(t) (55223

NASA/TP—1998-208415 38



Since p> m_continuity will be satisfied and this process may be repeated for a totéihwés, yielding
_d°

= aD; (£ (t)=_D™ P (t). (55.2.24)

Now for t >c, ,D™Pf(t)=,D™ "f(t), which completes the caséd> m) part of the proof,

Case 2:p<m
For terminal charging

mgq ! " O
D[pf(t):%a_(l—p)‘[(t—r)p dr+ .[ dra (55225

(]

m

Now assuman- p>1, (i.e., derivative of higher order than integral). Further, assume there
exists some generalized derivative of ordesuch thatv = n— g= m—- p, namely,

DY f(t)= D] D f(t), t>c, (55.2.26)

c-tc

wherenis the least integer greater thgrand 0< q< 1 Now, under the same continuity
requirements as above Leibnitz’s rule may be applied to the RHS of equation (5.5.2.25) to obtain

_ damt (p 1) (p-1)-
m p p-1)-1
D" D1 ()= je (o) j (t-7)" 7 f(r)dr (55227
_dm D, PV (t) (55228
_dtm—l a 't . )
Repeat the procegs total times, wherd < p—b<1, to obtain
m-b
= % DD (1). (55.2.29)
Let g= p— bthenm- b= m+ ¢ p= nyielding
= D! .Df(t)= D/ f(t)=_DYf(t), fort>c, (55.2.30)

thus proving the existence of the derivative andrthe p>1 case.
Now, if m— p<1, thenm-1< p, but by hypothesis for case @< p < m thus
m-1< p< m,

hencem is the least integer greater thartherefore, D" _D; " f (t)is by definition the
generalized derivativeD)' f (t). Thus,
D" D Pf(t) = D P (t) (55233

is proven, completing consideration of equation (5.5.2.20a).
Equation (5.5.2.20b) is now considered
.DP DM (t)=.D "1 (t). (55232
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Then for terminal charging and>c = a,
o-1 dm

t
D .Df(t)=,D;° D f(t (ij f(r)dr. (55.233
As above, two cases are considered.

Case 1:p>m=1
Applying integration by parts, fof (t) being m-times differentiable and (M #0, gives

B (t _T)p_l dm—l f('[)|t (p_l) t _ o-2 dm—l
) e Ia+ 0 -!(t T) e f(r)dr. (55234)
Since p>1, this evaluates to
__ (=) oy () AT
=T ) f ™ (a)+,D; s f(t). (55235

For f(t), m-times differentiable, and since> m=1, the process may be successfully repeated
a total of m times to get

.D.*.DIf(t) =,D mef(t)—g( (@)

r(p- kl)

Since by definitionf (t) =0 O t<a, thus ™ (a)= 0 for all k, and case {p > m=1)is
complete.

(55.2.36)

Case 2:m> p>0andm=1
Again, for terminal charging and> c = a,

m

D DM (t)=,D;” Dt (i_t[ —— f(r)dr. (55237

Again, for f(t) being m-times differentiable and (™ # 0, integration by parts may be
successfully appliedktimes wherek is an integer such th&t+1> p> k>1, thatis,p—-k>0
then,

. k (- )p j f(m—J)(a)
D" . D"f(t) =,D P D™¥f(t ( : 5523
a™~t a™t () JZl (p_J_l) ( 8)

and becausd (t) =0, 0 t <a, the summation terms of equation (5.5.2.38) analysis are zero.
Now 1> p- k> 0,and sincem> p, m- k>0 and is an integer. Let= p — k, then the integer
order derivative can be rewritten as

.D;? . D"f(t)=,D;" ,Di D™ *f(t). (55.2.39
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Then, since £ r > Ousing the preliminary result, equation (5.5.2.9) gives, provjdeti“* f (t) # 0,
DD (t)=,D},D;" . D" (t) (55.240)
:aDtl aDt_r aDtl aD:n_k_zf (t)

=.D; Dy D" ,DPH(t)  by(5529)
integer order derivatives. (5.5.2.43)

integer order derivatives (5.5.2.41)

(5.5.2.42)

:aDt2 aDt_r aDtrn_k_zf(t)

Repeating the last four steps a totahot k times gives
=D D" f(t) (55.2.44)
=D (t) by (55.2.31) (55245
=D 1 (1), t>c. (55.2.46)

Since, D™ *f(t)=.D™ "f (t), for t > c, then equation (5.5.2.32) is true and equation (5.5.2.20b)

is validated. This completes the terminal charging case.
For the more general case of side charging the equation
Ar(od () +w(f-paci)+y(hmacl
d"(.dmf()+w(f.mac))+w(g pac) for & c

ct

65247)

must be used directly as the authors have not found a stronger condition as of this writing.
Some special cases may be considered here. Case A is terminal charging of the fractional

integrators with side charging of the differentiators. After appropriate substitutions and

combining integrals in equation (5.5.2.47)
t

d” 1 J'(t—r)p_lf(r)dr+w(h,mac)z

dt" r(p)}
DOm0 e macr) . Be 65249

Then with the assumption thaﬁl"‘)(a) = 0 for all k, the following requirement is obtained

whmacd=d° 4 ()-. &, ¢° {3, d¢( t mage
dPe(f,mac), tc (65249)

For the reverse case B, which is terminal charging of the differentiators and side charging of the

fractional integrators, the requirement is

dqn qn
w(g-pa czt)=dt—m (f ,—|0,<':1,c,t)+dt—m AP () - dP F (1) =

m

i—mw(f,—p,a,c,t), t>c. 65250)
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5.5.3 Part 3, Fractional Differentiation

The requirement for fractional differentiation is to show, tforc,
D! DYf(t)=_.Dy D'f(t)= D"f(t), foru>0,v>0. (553)

Then by definition of the derivative and settings m— p andv = n— g with mand nthe least
integers greater thap and q respectively and with<Op< , dnd <q< wie have

DI . DYf(t)=.D™P D f(t). (5532)

By definition of the derivative
CDtuCDtvf(t):CDthD'[_pCDtnCD'[_qf(t) (5'5'33)
=.D".D;*.Dg(1), (5534)

where g(t) = .D;® f(t). From part 2 for terminal charging and singfg) =0, 0 t< a, the
- p andn differintegrals may be interchanged, thus

D! D/ f(t) =D D D, "g(t) (5539
= D™" D (P £(t). (55.36)

If p+q<1, then the definition of the derivative is satisfied and
D¢ Dy f(t)=.D/"f (t). (5537)

However, by definition of the derivatives in equation (5.5.2.36%,9< 2, therefore if
p+q=1,then for f (t) continuous,(t -T )p+q_l f (r ) and its partial derivative with respect to
t are continuous and we may apply Leibnitz’s rule to the integral to give

. Dtm+n—1C Dt—(p+q—l) f (t)= thu+V f (t) ’ t>c , (553.8)

since the definition of the derivative now applies. Thus, for the terminal charging condition, for
differintegrals initialized at = ¢, the index law holds true for both differentiation and
integration.

For the more general case of side charging, the most general situation allows ald$ the

to be arbitrary. Therefore to satisfy
Dy DY f(t) =.DE(t), foru>0,v>0 (5539

with (DI (t)= .d* f(t)+y (f,u+ v) requires the following relationship:
d f(t)+y (f,u+v)=
d™dPd"d “f()+ d"d PdW( - g+
d"d Py (h N+ dw(j-pg+w(ln for & ¢ (55310
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where ally's are arbitrary arla(t), j(t), and I(t) are defined as
h(t)= . D £ (1),
j(t)= D .DOf (t), (55311
and I(t)= D;”.D D% (t).

This is shown in block diagram form in figure 5-5-2. From the results of equations (5.5.3.7) and
(5.5.3.8), specialized to the uninitialized case the first terms on each side of equation (5.5.3.10)
are equal thus the general side charging requirement becomes

g(f,usv)=d dPdy( f-g+ ddW( b+ dw( F pry( ) hfor + c(65312)

where thec,t subscripts and, c, t parts of the arguments have been dropped for convenience.
Again, special cases may be considered. Terminal charging of the fractional integrators and

side charging of the differentiators, allows f ,—q) =,d;? f(t) and

@(j,—p)=.d;"{ . d7* f(t) +w(h n} to be substituted into equation (5.5.3.12). Similarly, terminal

charging of the differentiators and side charging of the fractional integrators allows

w(,ma,ct)=0 andw(hn ac)=0,in equations (5.5.3.10) and (5.5.3.12) above.

w(f.-q) w(h,n) w(j.-p) w(i.m)

+¢+ +¢+
f(t)>| 4" P 40 b 4" po—| 4" o
‘ ) i) I .D!.Df (1)
\

\ /

Wv VvV
c Dt CDtU
(a) Detailed diagram
w(f ,u+ v)
+¢+
_» cdu+v *@_» sy
‘ DM (L)
~—
DU+V

(b) Equivaent diagram

Figure 5-5-2.—Mathematical block diagram for composition of fractional derivatives
(eq. (5.5.3.9) and (5.5.3.10)). (a) Detailed diagram. (b) Equivalent diagram.
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5.5.4 Part 4, Mixed Integration and Differentiation

It still remains to prove the general mixed case
DD Vf(t)=.D;" D!f(t)=.D"f(t), t>c, (55.4.)
for u>0andv> 0.
For the case of terminal charging, let m— pwhere O< p< land m>1 and an integer, then

using part 1 results the LHS becomes
DY D' f(t)=,D".D;* D, f (t)=,D;" . D; " £ (1). (554.2)

Now, under the conditions allowing part 2, this becomes

=D " _pri(t) (5543
=.D;".D " DI (1) (554.4)
=DV .D/f(t). (55.4.5)

This proves the first equality in equation (5.5.4.1). Now, from equation (5.5.4.3ywigh> O
therefore, using part 2 results this gives,
D' Df(t)= D™ Pf(t)=.D"VF(t), t>c, (554.6)

completing part 4. This completes criterion 5.
5.5.5 Comments on Criteria

The totality of parts 1, 3 and 4 of criterion 5 above combine to give the following result.
Under the conditions of terminal charging of thth and v th differintegrals

D! D'f(t)=_.Dy D'f(t)= D" f(t) fort>c (5559

under the following conditions:
(1) u<0, v<0  for f(t) continuous
(2) u>0, v>0 f(t) is m-times differentiable,D" f (t) exists and is
a non-zero continuous function gft > a,wherem an
integer is the larger oft[u] or Int[v] .
(3) u<0,v>0  same as (2).
We now discuss the basic criteria results derived above for a generalized (fractional)

calculus. The scope of this work was limited to the real domain. Attention will first be focused

on the terminal charging case.
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Terminal Charging

Relative to criterion 2, backward compatibility with the integer order calculus, the addition of
the initialization function is clearly a generalization relative to the integer order calculus. In a
strict sensap (t) # Oviolates criterion 2, however we are seeking a generalization of the integer
order calculus and it is clear that this generalization (i.e., the formal addition of an initialization
function) will be very useful in many applications.

Relative to criterion 3 the zero order property holds for terminal charging.

Relative to criterion 4 linearity holds for the terminally charged case.

Relative to criterion 5, composition holds for terminal charging subject to the constraints
noted in equation (5.5.5.1). It is noted that the constrdifit(c) = 0 Ok, no longer exists, which
satisfies a primary objective of this work. This constraint has effectively been contained in
(shifted to) the requirementt(t) =0, 0 t <a. This allows practical initialization for fractional
differential equations.

In summary , the terminal charging case is backward compatible with the integer order
calculus and satisfies the applicable criteria established by Ross for a fractional calculus.

Side Charging
The state of affairs with regard to side charging is less definitive. Criterion 2, backward

compatibility, is the same as the terminal charging case singe’thare arbitrary.
Relative to the zero property criterion 3, the conditions that

c

w(f ,—p,a,c,t):ﬁj(t—r)p‘lf(r)dr and y¢(hmac)=0, (6552)
are not required for side charging. When these conditions are not met, the zero order operation on
f(t)will return f(t) + g(t), that is, the original function with an “extra” time functiog(f)),

the effect of the initializations. At first reading this may appear somewhat bizarre, however, this

is of benefit (realizable) in analyzing certain physical systems. This will be demonstrated in the
applications section of this paper (see for example the generalized zero order operator), and the
reader is requested to reserve judgment until that point.

Relative to criterion 4, linearity for the side charging case, demands the requirements of
equation (5.4.6) or equations (5.4.18) and/or (5.4.20).

Relative to criterion 5, composition for the side charged case additionally requires the
satisfaction of equation (5.5.1.1.2) for fractional integration, equation (5.5.2.47) for mixed
generalized integration and integer order differentiation, and equation (5.5.3.12) for generalized
differentiation. It is noted that with equality of the leading terms on the two sides of equation
(5.5.2.47) the requirement is simplified to

At -p)+w(hm= g y( f M+ o P (6553)
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These are not so much of an issue as first appears for practical application. In the solution, for
example, of fractional differential equationg(t) will be chosen in much the same manner as
initial conditions are currently chosen for ODE’s or for PDE’s. This will imply the nature of
f(t) fora<t<c. The new aspect is that to achieve a particular initialization for a given
composition now requires attention to the initializations of the composing elements. That is, the
requirements derived above must be used to determine the new initialization.

6. Laplace Transforms of Generalized Differintegrals

In this section general forms will be derived for the Laplace transform of fractional
derivatives and integrals. The derived forms should be generalizations of those available for use
with ordinary (integer) differential equations and will include the effects of the initialization
functions for the fractional differintegrals.

6.1 Preliminaries

It is useful to consider the following two simple cases before attempting general results.

Based on the integer order calculus, wHdh) is piecewise regular and of exponential order, the
t

Laplace transform of f(t)dt is given by

g dtD—— L{ { f(t (611

(see e.g., Wylie (1975) p. 265). Contrast this to the generalized calculus case for the same
integral,

0
{,Df(t g t)dt+y (f,~La b0 (612)
0

If equation (6.1.1) is used to evaluate the transform we have

{, D'lf()} J’f )dt+ {w(f-Labi}. (613
However, in the most general cageis arbitrary, if it is chosen ag = constthen since
t
{cons} ==, (614)
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it is clear that this term contains the initializing effect of the second term on the RHS of equation
(6.1.3). Hence it is not necessary to include such terms that redundantly bring in the effect of
initialization from the integer calculus. Thus,

L{,D*f (1)} = % L{ ()} + L{w(f ~1abt). (615)

Consider now the integer derivative. Based on the integer order calculus under appropriate
conditions (see Wylie (1975) p. 264) the Laplace transforrfi'ft) is given by

L{f(t)} =s £(9} - £(0). (616)
Contrast this to the generalized calculus case for the same derivative
d f(t) O
L{,Dif (1)} = L%TH/J(f ,1,a,0,t)%. (617)
If equation (6.1.6) is used to evaluate the derivative in equation (6.1.7), the following is obtained:
L{,Drf (1)} =s{ f(8} - £(0")+ fu (fLa079} . (6.18)
Again in the most general cage is arbitrary, if it is chosen ag = — f (t)5( - O*), then, since
- f(a(t-0)} =-t(0") (619

(see e.g., Gabel and Roberts (1973) pp. 72-77) it is clear that this term contains the initializing
effect brought in by the integer order calculus term. Again it is not necessary to include such
redundant terms.

The redundant terms are introduced into the above equations by the product term of the
integration by partgormula, which is applied in deriving the reference equations in the integer
order calculus. In the subsections that follow, these redundancies will be eliminated without
hesitation when it is appropriate to do so.

In the material that follows, considering discontinuities at0, evaluations stated as= 0
will be understood to be evaluatedtat O+, consistent with the conventional definition for the
Laplace transform (Wylie (1975)).

6.2 Laplace Transform of Fractional Integrals

For simplicity the starting point is taken as= 0. Thus it is desired to evaluate

o0 D _ g-1
L{ODt—qf(t)} - -([e—stg(tr(-;)) f(r)dr +y(f,—q a,O,t)Edt g>0, t>0. (621
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The convolution theorem for the Laplace transform (Churchill (1958)) may be applied if
H(s)andQ( 9 are transforms df(t)andg(t) , which are sectionally continuous functions and are
of exponential order as— . Then the convolutiom(t)Jg(t) exists and is defined as

(O00()=[ He) o t-1) (622)

and
L(h(90g(9) = H(9 | § = % fr) 6 +1) o (623

g-1

Then takingh(t) = f(t) and g(t):% the convolution theorem (for eq. (6.2.1))yields

_ Ot O 1
F(9&(9= 1 f(}) LEI‘@S_ S L(f (1)) q>0. (6.2.4)
This yields the general result,
L(,D7f (1)) = S—lq L(f () +L(w(f,—q.20.1), q> 0. (6.2.5)

Now in equation (6.2.5)4/(1‘ =0, a,O,t) may be thought of as the composed (equivalent)
effect of the initializations of the mathematical elements used to ¢yBate (t). For the
fractional order case there are infinitely many was® f (t) may be composed, as opposed to
the integer order calculus case where only combinations of integer order integrations are
possible. For example, in the integer order calculus, the familiar Laplace transform,

{0} =s"F(9- ¢ (0+) - €2 #(0+).... f™(0+), (6.26)

infers that f (" (t)is composed of (or decomposed intideparate differentiations each of order 1.
6.2.1 Integer Order Decomposition of Fractional Integral

It is clear that the composition law must be satisfied to achieve equivalent initialization
functions. Further, so long as only generalized integration is considered, composition is satisfied
(eq. (5.5.5.1)).

As an example decomposition, the following is obtained through integration by parts; for
g >1, consider

00

L(w(f.~q.20.1)= [e*w(f-qa0,) dt 6211)

0
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Now integrating by parts, with

uzw(f,—q, a,O,t), dv= €% dt, (6212)
then
du=2 y(f,-q,20, 1)t _&” (6213)
u_dtw ’ q!ay 1 ’ V_—S’ .
and Withd—w:w(l) yields
dt
00 100
L 0, a0l +=[ew?(fr-q,a0,)dt 214
(vt -aa0.0) = Fow(r aa )ﬁo JJeut(traa0 o p214)
or

1 1
L(L,U(f ,—q,a,O,t)):O + gc,u(f ,—q,aD,t)L:O + gL(l[l(l)(f -q.a0 t)) . 6215)
Repeating this process gives
1 1 1
Uu(f-aa08) = u(faa0d, +2 %w(”(f a0+ Lw?(f a0 t))@ . 6216)
Now repeating the process a totalrafmes, wherenis an integer such that+1> q> n gives

1 "1
L(w(f.~9,20,1)) =5 L(w"(f ,—q,ap,t))+lzzl§w(‘")(f ~q.a0 ,t)|t:0 6217)

as the expression for the equivalent initialization function. This equation then yields

L(,Df(t)) = S—lq L(f (t))+S—1n L(w<“)(f —q, a,o,t))+ is—ljw(j'l)(f —q ,aD,t)L:O 6218)

The inference of this equation is that tpth differintegral is composed of order 1 integer
integrations and a fractional integration of order n(see fig. 6-2-1-1). Further, the order 1

integrations are each initialized by a constw](tj(l)|tzo terms in the summation). This form is
useful in showing backward compatibility with contemporary Laplace transform theorems for
repeated integer integrals in the integer order calculus, namelynfimgrations (see Appendix B),

%f{ Ilf dt, dt,, dfgdﬁa | }z— n=123.... 6219)

The compatibility is seen by taking= n=1,2,3.. and properly selecting; in equation

(6.2.1.8). In equation (6.2.1.8) the summation term is the result of repeated application of
integration by parts and the term represents a redundancy relative to the preceding term for the
generalized calculus.
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f(t) +i+ vt vt ) Lyt vt
n=q ' 2Ca > -1 > > -1 coo B >0 —> 1 >
e ‘ i R I il RGO
\ v /
(a) Mathematical n-Order 1 Integrations
Ho(f ~aact)  po)) L]} Ly ).} v}
{10} —| = J!A, 1 ,J! o 1 J!H_. 1 :JVL% 1 »L
S S S s s L{ODth(t)}
\ — /

(b) Laplace transform n-Order 1 Integrations

Figure 6-2-1-1.—Block diagrams for integer order decomposition of the fractional integral (eq. (6.2.1.8)).
(a) Mathematical diagram — time domain. (b) Laplace transform — frequency domain.

It is clear that infinitely many more possibilities exist than this form. As a further example the
integer order integrations in figure 6-2-1-1 could just as well be replaced by generalized
(fractional) integrations each also of order 1. Each of these would allow a non-constant
initialization function; thus consider the decomposition shown in figure 6-2-1-2. For this case,
,D 91 (t) is decomposed inta generalized order 1 integrations and a fractional integration of
order — g+ n. Thus, nis the greatest integer less thgnSince all of the operations are
integration, composition holds, and the following may be written relative to this diagram:

ODt_qf(t)zwl-'-Odt_lxn—l(t) , g>0,
=y, +0dt_l(l»U2 + odt_l)ﬂn—z(t)) ,
=, + o7, +od 2 (15 +od ™ x,5(D)
=Y, + odt_llnuz + odt_zlnua +o d[_g )ﬂ1_3( t) (6.2110)

w(t.n-qa01t) ¢,(x-1a0t) . (x-1a0t)  ¢,(x_-1a0t) ¥(x,-1201)

+ 4= 4 —

f({t)o>| gro ppro—>| gt ppro—>| g oo gt o] gt o>
+ X, + X, ToX X X + X, =,D; (1)
\ /

V
n-Generalized Order 1 Integrations

Figure 6-2-1-2.—Mathematical diagram for generalized integer order decomposition of the
fractional integral of ordeq (eq. (6.2.2.12)) for>c = 0.
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Repeating this process a totalrtimes and observing that
x(O=¢(f.~a+n a0, §+,d*" (3, (62111)
gives the following:

oD ()= od f(1)+ od"w( f,—g+ n a0, §+ Z . d(i—l)wj( x ~1, a0, ) , (62112
&

as the mathematical representation of the diagram. The Laplace transform is now taken of this
equation while noting that the effects of initialization are explicitly included and should not be
included again when transforming the uninitialized integral terms.

Thus,

1 1 1
i)

L{ODt—qf(t)}=§L{f(t)}+§L{Lp(f,—q+n,a,o,t)}+_:l . fu,(x -1a08} | 62113

Becausel{cons} = const sit is clear that the difference between this equation and equation
(6.2.1.8) is the effect of initializing here by a function of time instead of a constant as in equation
(6.2.1.8). This equation (6.2.1.13), of course, is a generalization of equation (6.2.1.8). Further, if
gis an integer, namelg= n, thenx,(t)= f(t),andy (f,-q+ n, a0, ) may not be required.
Then this equation specializes back to the form for the Laplace transform of a multiple integer
integral from contemporary transform theory (see Appendix B), namely,

|_{ao|;“f(t)}:s—1n L{ f ()} + n % n=123-. (62119

=1

6.2.2 Fractional Order Decomposition of Fractional Integral

A much more general decomposition, @, ® f (t) can be obtained that is not limited to integer
integral elements. Consider the mathematics associated with the decomposition indicated in figure
6-2-2-1. Since only fractional integrations are considered, composition holds for the case shown in
this diagram. Thus, dropping the subscriptg Dp® for convenience we have

D %D %,..D"®D *D x(t)=x,,(t)= ,D*f(t), t>0, q=0 Ok, (6221
whereq = z g . Then starting from the inside
1=1

L% (0 = { o x (0} + L{w (%~ a0, )}, (6222)

for which the following shorthand will be used:

L} =1{dex}+yy(9. (6223
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wy(t) w,(t) wy(t) W, 4(t) w, (1)

e ey Mt A e

| d7% Po—| d* Pro—a| d™% o coc | d % POo—3| d% po»> ¢
f(t)=x X X, Xos X, X ,.=,D 2% (t)

n+l 0"t

n- Fractional Integrations

Figure 6-2-2-1.—Mathematical diagram for multiple generalized (fractional) integratises; O.

Then
L%} = st x} +w,(3 (6.224)
and
L{x} = {d ™ x} +u (9= s* L +u} (6225)
=se{s* 1 x}+ (3 +u B (6226)
again
L{X4} = L{ d-* Xs} +(9= 8% |{- )§} +yf (6227)

=sesest f o+ 5%y b+ Sy,( )y, )s (6228

=5 x)+ sy (9+ sy ( e (B (6229
Repeating the processxg,

W Xpaf =@ L x} + s& 9y, ( $+ 59 g, (
et S_qnfl_qnwn—z(s) + §q”llfn-1( $+(»Un( )3 (6-2-2-10)

Now defining B, = z g equation (6.2.2.10) can be written as

Xt =SB x} + s%0,( $ror Sy Bre,()s 62211)

or more compactly as

oDt (0 = L{oDx(0) = i} = s® o+, (3+ 5 7w (B | (62212

where B:Zqi l<as<n q=0 Ok
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The attraction of this form is the fact that #jecan be integer, non-integer or mixed. Further,
although this analysis was done tp¥ 0, that is, for fractional integrals the basic form will also be
shown to hold for fractional derivatives provided composition is satisfied. The effective initialization

then for this case is
n-1

o] =09+ S s™0,(3 . (62213

=1
6.3 Laplace Transform of Fractional Derivatives

Again, for simplicity, the starting point is taken@s 0. Here it is desired to evaluate
L{,D¢f (1)} = L{,D", D" F ()}, u>0,  (631)
wherem is the least integer u such thatu= m- p. Then substituting the definitions and

expanding, gives

el R U= o il = (S ) Nl \dr
L{, D¢ f )} =L{,D", D" f (1)} L%dtmg ) f()d%

Od™ 1l

L%Fcp( -p, a,O,t)E+ Hy(hmao,}}, t0, (633
where h(t) =, d® f(t). The sum of the last two terms on the right-hand side can be thought of as
the equivalenty for ,D'f(t), thus

L//eq(f,u,a,O,t) %w(f ~p, a,O,t)+L,U(h,m,aO,b : 633)
Consider the first term of the right-hand side of equation (6.3.2),
Edm (t- o dOd™ ¢t (t-1)"" O
T)dr ot f(r)drlat. 6.34
EIdtmg % J. dtmtm—lj. r(p) (T) TD ( )
Applying integration by parts where
- d ™ L= ¢ g
u=e*, dv= " [jdt”“f e f(r)dr%tlt, (6.35)
then
d™ L(t-1)""
— oSt
du=-se* dt, V:dt"”-([ (o f(r)dr, (6.3.6)
yields
d™ t(t-1)"" e dHd™ (1) 0
— St —st
= e { 0 f(r +sf o Ddtm' I (o) f(r)drEblt. (6.37)
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The first term evaluates to zero (further, this term would be a redundant initialization), thus

Edm (t-1)"* Eddet( -7)"*
R ORL e

Repeating this process a totahotimes yields

Egtm j’ drgz s 1, f(D) . (6.39)

f(r)d % (6.38)
T T[@

Therefore, one form of equation (6.3.2) is;
L{ oDy f (t)} = L{ oD D P f (t)} =

s L, o (D) + L%i—:w(f,— P, a,O,t)§+ Hw(hmao,}} (6319

or with equation (6.3.3),
L{,Def @)} =s™ L, o f(} + {w(f ua0 i}, (6:311)

Wheret,ueq(f ,u,a,C, t) IS written aq/(f ,u,8a,c, t) to allow the generalization that follows.
Applying the results for the fractional integral, equation (6.2.5), gives

L{ ODt”f(t)} =gmP L{ f(t)} + L{(,U( f,u a0, t)}
=s'1{ (0} + w(f. uao, i} (6:312)

These simple forms are the most general forms for the Laplace transfgiyi oft) . It is
noted that this form is the same as that of equation (6.2.5), thus in equation (6r@dy2jake
on any real value.

Now, as in the fractional integral case, there are an infinite number of ways in which
,D"f(t) may be decomposed. Thus, there are many possible formulatiap@ﬁcbr,u, a, C, t) .
Some of these will now be explored.

6.3.1 Integer Order Decompositions of the Fractional Derivative

An equivalent form may be derived fod ¢ (f,u,a0,t)} with ucomposed oim integer
order differentiations and a single orderfractional integration. Consider then, the second term
of the RHS of equation (6.3.2) or (6.3.10),

L[1—(,U( paOt)Ezme'stEdew(f—paOt)Ddt 6311)
0 (1 mpa0. e (1 -p.ao .
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Again, integrating by parts with
d dm—l

u=ge*, dv:a q l,U(f ,—p,a,O,t)dt : (6312)
m-1
du=-se* dt V= %w(f ~p,a0,t) . (6313)
Therefore,
de |:| . dm—l *© 0o . dm—l
Lgﬂ?w(f,—p,a,O,t)ge tWw(f ~p.ady) +sf e dtm_ltl/(f ~p.apydt
0 0
dm—l de—l |:|
=—-—=yl(f,—-p,al,t) +slGsyl(f-padfn (©314)
dt 1 ( )tzo Eﬂt 1 ( )D

This result can now be applied to determine

Od d™? O
L f,—p,a0,t)=

e y(f-pa )E

Od™2 Od™2 0
—th(f,—p,a,o,t)ﬂ +SLle,U(f ,—p,a,O,t)D. (631.5)
t o Ot 0
Then,
de |:| dm—l

+

t=0

LE’FL,U(f,—p,a,O,t)E: _W(,U(f ,—p,a,O,t)

0 ogm?2 [g™?2
SQ WW(f v pi aloyt)ﬂtzo +S L%W(,U (f . p,a,O,t)%. (6316)

Repeating this process a totalraftimes and writing

k

%w(f,—p,aﬂ,t)w(”(f,— p.a0.{, (63L17)
yields

eultpa0dFe dy(mpa0 -3 £ - poj|, . 6a1m)
=1 )

It is noted here that the summation term, in this equation, is the result of repeated integration
by parts from the integer calculus. Clearly an arbittarynay be chosen such that the
initialization information contained in the summation can be incorporated into the previous term.
That is, the summation term is redundant but will be carried so that an explicit comparison of
form back to the integer order calculus may be made.
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Substituting equation (6.3.1.8) into equation (6.3.10) gives the following expression for the
Laplace transform of the generalized derivative (decomposed into integer differentiations with
L,U(m_ j)(f —p,a,c, t)|t:0: constant initialization):

L{,Drf ()} =L{ ,D", D P f (1)} =

s, o f() + (- pao - {pI( - p aﬁ,))Lo + {y( bma,. 6319)

=1

t
Here, ,d;® f(t) = ﬁf(t - 1) f(1)dr, is the uninitialized fractional integral originating at

0
t =c=0andh(t)=,d; " f(t) as defined for equation (6.3.2). Equation (6.3.1.9) is a general
expression for either side charging or terminal charging, (but is limited to the case whgre the
terms in the summation evaluate to constants). Equation (6.3.1.9) infers the mathematical block

diagram shown in figure 6-3-1-1.

,orf (), HCl L{c} e} ded e L{w(h.m)
. Vo )
f(t) | s? |wowor»]| s o—| s [ro» ool s _><v9_> s o
* T f,pre ()
L{l,U (f - p)} \ v _/

m- Order 1 Differentiations

For this Diagram C,_, = ™) (f,-p,a,0,t) .,

Figure 6-3-1-1.—Mathematical block diagram for equation 6.3.1.10.

The first term of the RHS may be written a‘sL{ f(t)} , and the above equation becomes

L{oDf (1)} =L{ D" D (1)} =

s'f £(1)} - Z sy f- p a0, p)LO +fy(hmao,}.| 63110)

IE

Note, what has been done here is to decompose the integer order derivative PAft(of,
namely,,D," into m integer differentiations, each of order 1. Specialization of this equation
back to the integer order calculus expression for the transform of the derivative, namely,

L{ 1)} = s #(1)} - i s™ fm(07), (63117
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can be seen as follows. In equation (6.3.1.10), {akeD (zero order operator; that this operator
can have an initialization in the generalized calculus will be demonstrated in the application
section). Set,U(h, m a0, t) =0 then L/l(f ,O,a,O,t) can be specialized such that

wm (10801 = 1m(0) (63112

t=0
and the reversion is shown.
In the context of equation (6.3.1.10),
{w(f,ua0.t}=- ﬁ si'l(w("”)( f-p ap, D)LO + fy(hma,} . 63113

j=1
Further generalization of equation (6.3.1.10) is possible in several ways. From equation (6.3.2) or

: . Od™ 0 : o
(6.3.10) consider, again, the terln%?w(f P, a,O,t)D. Now since the initialization can be
U

completely arbitrary, let

m

w(f-p.a0,t) = od " (Do P, ()+ ot ™, (3= o d "y () . 63114)

=1

Then,
Odm B 0 _ m diwj(t)g _ m o
L%Ww(f, p,a,O,t)E = Lézl B j;lsl w0} . (63115)

where the redundant terms have been dropped. Then equation (6.3.1.10) can be generalized to
L{ oD f (t)} = L{ oD D P f (t)} =

s'1{ (9} + i s I_{L[/j(t)} + Yy(hmeo, }}. (6.3116)

The difference in the two equations, of course, is that here the order 1 derivatives are each
initialized by time varying functions. The inference of this is that the order 1 differentiations are
now generalized order 1 differentiations. The derivative initializati{m(h, m a0, t)} can also

be similarly distributed over the order 1 derivative terms to produce a similar effect.

6.3.2 Fractional Order Decompositions of the Fractional Derivative

The Laplace transform of the generalized (fractional) derivative may also be based on
decomposition into fractional derivatives and integrals. The general fractional order
decomposition of the fractional integral as performed in a previous subsection may be extended
to the case with fractional derivatives. To do this, replace the fractional integrations indicated in
figure 6-2-2-1 by fractional differentiations; tet, = r,with r, 20 Ok (refer to fig. 6-3-2-1).
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t,u(xk,—p,a,o,t) L,U(hk,mk,a,o,t)
x ()= d» —»i—»* dm l»L—» Xoq (1)

(a) Differentiation element

wk(xk’qk’a101t)

+
+

X ()= o Xpr (1)

(b) Equivalent differentiation element

Figure 6-3-2-1.—Fractional differentiation element. (a) Differentiation element.
(b) Equivalent differentiation element.

Then the decomposition is valid provided: (1) that composition is satisfied at each step of the
reduction and (2) that for eack suchthatr, >0 the initialization ¢, is considered as the

equivalenty for differentiation, namely from equation (6.3.3),
m

d
Lllk(Xk, rka,O,t) = dt—mtﬂ(xk v pk—lia’oat)"'w(rl M, a,O,) ) (632)-

where m, is the least integer such that=m, - p,and h.=_d;* () . The result then by
identical mathematics as in the integral case is

LoD (1)} = L{ oDAx, (1)} = L{x,..(0} = $* 1{ x(9} +w,( 9{2: $y,( B (6322

whereB, = 3 r,, =0 Ok, l<as<n,

Clearly the extension of this result to glladditionally requires the full applicability of the
mixed-mode form of the composition law (eq. (5.5.4.8)) and the use of the equiyadsrdiven
in equation (6.3.2.1) whenever > 0. This general result, equation (6.3.2.2), forralis
probably the most powerful and useful of the forms derived in this subsection.

6.4 Effect of Terminal Charging on Laplace Transforms
In the results generated in this sectionjalterms were treated as completely arbitrary, that
is, a side charging assumption is implicitly made and the forms above apply to either terminal or

side charging. The effects of terminal charging may be readily determined by appropriate
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substitutions for they terms. That is, for the integer derivative terms substitute
L/J(h, m a0, t) =0 m=12.., and for the fractional integrations (either as part of the derivative

or alone) take
0

w(f.-p, a,o,t)=$!(t—r)p‘lf(r)dr. 641)
Of course it is not necessary to terminal charge both terms of the derivative, but the choice is
made based on the desired decomposition.
Some modest simplifications may be achieved. For example, relative to the Laplace
transform of the fractional integral, thee ' terms in equation (6.2.1.8), if terminal charging is
assumed, are

L,U(k)(f,—q,a,O,t)L =%ﬂ:l%91(t F(;))q_ f(r)dr% , t>0. (642

Applying Liebnitz’s rule gives

@ M(f, ant %%%Iq 1(t_ f(r)dr% , t>0. (643)

Now becauséq —1)/ F(q) =1/ F(q— ]) the integral is recognized as the initialization of the
(q —1) th order differintegral and continuing the process yields

w¥(f-qa0,0_ =¢(f-q+kaoj ., 0. (644)

In similar manner, the more general term in equation (6 2.1.8) yields

@ " (f,~q,20,t)=¢(f~qg+ n ao, ﬁ I(t— )" f(r)dr, t>0, @45)
wheren+1>q> n>0 andnis an integer.
6.5 Effect of Starting Point
6.5.1 Fractional Integral
The effect of starting with non-zei@ (and c) is considered for the fractional integral.

Specifically, the case af > a= 0,andq> 0 is considered. Then for the uninitialized fractional
integral

{0t (@)} = L{,d f(r)} —LF (t— dTB, q>0. (6511
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By definition f(t) =0, for t < a,therefore we can write

f(t) =u(t-a) (1), (6512

where u(t) is the unit step function, and thus the result is

.ot @ ={,d ()} = L{,d*((t-a ()}, a>0, a=0. (6513

6.5.2 Fractional Derivative

Under the same conditions as above, the uninitialized fractional derivative is considered, then
Og™ 1 a O
L{ . dif(t)=14,d" . d° f(Y = L-——7~[(t-7)" f(r)drO, g>0, (652)
L0 10} = oo d” 100} = Wy .
and as beforen is the least integer g such thatg = m— p. Again by definition,
f(t) =0 for t <a, therefore we can write

f(t)=u(t-a) f(1). (65.22)
Thus
L{ ,dd f(t)} = Lgdt: ﬁj}'(t -7)"u(r - a) f(1) drg (6523
Od™ O
= L o (W(t-2) f(9)0= {od((t- 9 ()}, O. (6524
Thus, combining results of equations (6.5.1.3) and (6.5.2.4) gives
Lot} = L{,d?((t- 9 ()},  Oqg (65.2.5)

6.6 Laplace Transform of Initialization Function
6.6.1 Fractional Integral

It will sometimes be useful to deal with the initialization function in the Laplace domain.
From Laplace transform theory (Wylie (1975) p. 281) the so called first shifting theorem is given
by

L{g(t-a)(t- d} = e* { 4 }}, & 0. (6.6.1])
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Letting f(t) = g(t - a), this can be rewritten as
L{f(t)u(t-a)} = e*=f f(t+ 9}, a> 0, (6612

Now for the fractional integral (under terminal charging), the desired Laplace transform then is

Hw(t-a.acdf =1, g (8} - o a3} . (6613)

Using the above result, equation (6.5.1.3)
= {7 f()u(t-a)} - o () t= 9} (6.6.14)
= f(Out-a} - s ()Gt 3 (6615

and applying the modified shifting theorem gives the resultgfe0,
y(f-qacl=sle{ (= 3-e={ (¢ }|. e 20 (6616

6.6.2 Fractional Derivative

The equivalent initialization function for the fractional derivati@" f (t)=_D" D" f (t) is
given by (eq. (6.3.3))

m

weq(f,u,a,c,t)z%w(f ~p.act+y(hmac), wo, 6621)

wherem is the least integerw such thatu= m- p. For terminal charging it has been show that
w(h,ma ¢ )=0, therefore

{L,U(fuact} é“L{L,U f—pac)} 6622)

and applying the above result (equation (6.6.1.6)) for the fractional integral yields

o (fuact=¢{e=f (= d-e{ (¢t B}, e a0 (6623

6.7 Summary—Comments on Laplace Transforms of Differintegrals

(1) The general case forms of equations (6.2.5) and (6.3.12) for the fractional integral and
derivative, respectively, will be most useful in many applications. Subject to satisfaction of
continuity and composition/index law as required in the derivations, these solutions may be
combined into the single form

L{,Dff () =sL{ #(0} + {y (. q 20,9}, 0q. 6.71)
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Where for fractional integratio(q < O), L,U( f,q,a0, t) is arbitrary and for fractional
differentiation(q > O) whereq = m- p andm is the least integes g, then

m

l,U(f,q,a,O,t):% (f -p.a0.)+y(h,map,)

whereh(t)=,d; " f(t). The use of equations (6.7.1) and (6.7.2), along with block diagrams, to
clearly delineate the component parts of the various elements (the decomposition) can be an
exceedingly useful approach.

(2) The solution of integrodifferential equations containing the combination of fractional
order and integer order terms ( non-generalized ) can effectively apply the forms of equations
(6.2.1.8) and (6.3.1.10) for initialization by constants for the integer order terms. When the
forms contain generalized integer order terms the equations (6.2.1.13) and (6.3.1.16) should be
applied. Of course these later two equations are generalizations of the former two and may with
care be used in both cases.

(3) The forms for the Laplace transforms with fractional decompositions are still more
general than either pair of equations discussed in (2) above. These are equations (6.2.2.12) and
(6.3.2.2) and are nearly identical in form. In fact these equations taken together may be
generalized into a single result, which is equation (6.3.2.2) nyitbe to take on both positive
and negative values, that is,

n-1

oD% (0} = Wxa(0} = > Y x(P+w.(3+3 8u,( 3, (67.2)

n

whereB, = r; , Or., 1l<asn.

1
I=a

For this equation, when, >0 it is understood to be interpretedras m, — p, as derived
in (6.3.2.2).

(4) Many of the forms derived in this section on the Laplace transform have been derived to
demonstrate how the initialization function generalizes the Laplace transforms seen in the integer
order calculus. An example of this is the reduction of equations (6.3.1.10) and (6.3.1.16) to the
familiar form of equation (6.3.1.11) for tmh derivative, whenp(t) is specialized to be a
constant. Similar is the reduction of equations (6.2.1.8) and (6.2.1.13) to equation (6.2.1.9) for
the Laplace transform of multiple (integer order) integrals.

(5) The reader isautionedin the use of these forms to assure that the constraints of continuity
and the adherence of the index /composition laws are met as required in the derivations.
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(6) The selection of appropriate initialization functions when structuring fractional
differential equations will be analogous to, but somewhat more demanding than, the selection of
constants when structuring ordinary differential equations. Experience working with particular
eqguation types and/or types of physical systems will be required of the analyst in the selection of
initialization functions.

7. Applications

The domain of applications and potential applications for the fractional calculus appears to be
very broad indeed. However, the depth of research and application of the fractional calculus
appears to be quite limited in most fields, with the exception of rheology (and viscoelasticity in
particular). Broadly the applications and potential applications are found in diffusion processes,
electrical science, electrochemistry, rheology, material creep, viscoelasticity, dynamics, and
controls. Preliminary investigations have also been made into the applicability of the fractional
calculus to acoustics, boundary layer theory, and turbulence. Further research has been directed
to the relationships between fractional calculus and fractals. A special (non-exhaustive) set of
application references has been provided following the general references that direct the reader to
these areas. It should be noted that not all of the references in this section contain explicit
reference to the fractional calculus, but are included because either theoretical or experimental
responses are observed that infer fractional calculus based behavior.

This section studies a variety of applications and analogues of the operators and combined
operations of the generalized (fractional) calculus. The intentions are: (1) to demonstrate the
broad array of uses of the generalized (fractional) calculus, (2) to clearly delineate the effects of
the initialization function, (3) to contrast generalized versus integer order (calculus) integration
and differentiation, (4) to demonstrate the generalized zero property, (5) to demonstrate the uses
of some of the Laplace transform tools (forms), (6) to demonstrate some of the unusual aspects of
the mathematics, and (7) to demonstrate that the generalization of the zero property, (i.e., eq.
(5.3.12) may allow the analysis of otherwise insoluble (with the fractional calculus) problems).
The problems, hopefully, will appeal to both the mathematician and the engineer/scientist.

7.1 Preliminaries
Two semi-infinite electrical lines and the op amp (operational amplifier) will be used as key

building elements for some of the examples that follow. The time domain behavior of these
elements is summarized here.
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7.1.1 Half Order Element

The half order element (semi-infinite lossy line (Hartley and Lorenzo (1998))) is based on the
one-dimensional diffusion equation

dv_adzv
at ax*’

(7111)

which is depicted by a ladder of discrete resistors and capacitors as shown in figure 7-1-1. In
actuality the resistance and capacitance in this and the inductance in figure 7-1-2 are
continuously distributed over distance. The terminal characteristics (fig. 7-1-1) of this equation
(the driving point (impedance) solution) is mathematically described by

V(0= S 1 ) (7112)

At
|_‘

or

v(t)= ra DY), Wherew(i,—}/zact):%qbl(t) |

or
oy - L AV
i(t) = o dt’? ¢,(t) , (7113
o
or
it)= N— DIV(),  where g(v % acd= wag,(1) . V()

Figure 7-1-1.—Half order element.

Here v(t) andi(t) are the voltage and current, respectively, at the terminal of the elemisnt,

the resistance per length of the line, ands the product of and c(the capacitance per unit
length of the line). They 's are the initializations and in both cases are determined by the initial
state of charge and voltage or current that exists on the infinite array of elements.
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7.1.2 Zero Order Element

The second element that will be used is the zero order element (semi-infinite lossless line),
figure 7-1-2. It has terminal characteristics which are wave equation based and is mathematically
described (Hartley and Lorenzo (1998) eq. 42) by either of the following equations:

i(t) = \/%7v(t)+ ¢ (1), (71.2.1) g_“_
or

i(t):\/% .Dv(t), wherey(vp ac,)= \/%¢3(t) : %—l I—

v(t)= \/?i(t)+¢4(t) | (71.2.2) _rl“lv—
or i(t)

v(t) = \/% Di(t), where y(i0act)= \/§¢4(t) . v(t)

Figure 7-1-2.—Zero order element.

Here ¢ and care the inductance and capacitance per unit length of the semi-infinite line. Again,
it is the initial conditions on the distributed inducttﬁ%s) and capacito(s's) along the infinite

lines that give rise to the initialization functions (of time). Details of the physics relative to the
expressions for theé functions are given in Hartley and Lorenzo (1998).

7.1.3 Operational Amplifier

The operational amplifier is a common element in electrical circuits. To analyze it we
introduce the concepts of impedance and transfer function. For convenience, the circuit of figure
7-1-3 will be analyzed in a general way here, for use in the later examples. Th&teanksZ, |
the input and output impedances (voltage to current ratios), respectively, will represent general
linear circuit elements together with their initialization functions (therefore are not strictly
speaking impedances).
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Then, as Laplace transformed variables

vi(9-v(9=i(s 7 » input element, T7131)
vo(9-v(9=1i(3Z(} feedback element, 7032. )
i,(s)—i(s)-i,(9=0 grid node . 7133)
Zs
Vg T
>

o—i /i Ig —e
Vi Vo

Figure 7-1-3.—Operationa amplifier circuit.

These amplifiers are designed so that idegllf0 thusv, 000 . Then, after algebraic reduction,
the resulting (voltage-to-voltage ) transfer function

Vo(S) _ Z; (9
Vi(s) B Zi(s)

summarizes the behavior of the device. In the examples that follow we will sometimes use this
result rather than rewrite the detailed equation set for the elements and node each time. In the
next five subsections these basic elements will be used to assemble voltage based (computing)
circuits of both fractional and integer order devices. Several approaches will be used in these
subsections.

(7134)

7.2 Integrators
7.2.1 Classical (Integer Order Calculus) Integrator
An idealized implementation of the classical integrator used in analog computation is shown

in figure 7-2-1. This integrator characterizes integration in the integer order calculus context. The

defining equations are
v(t)-v, () =iR, (7.211)
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=L {i (o +@ _ ?1;1' (t)dr +(vg(c) ~v(9), (212

i, =i and v, (t)=0, (7213)

where g(c)is the initial charge on the capacitor. This equation set yields

()= e fu(e)dr + w(d= - L D).
wmlﬂw:Lan:—Rcwé. (7214)

Then, with RC =1, this integrator would be represented in the generalized calculus as

v, (t) = —_D;*v (). The full effect of all past history is then contained in a single number, the
initialization function, and is the constantv(c), compatible with the integer order calculus.
This is contrasted with the following case.

C
||
I
—
R Vg If
>
o—\\—Tig —
Vi —> Vo
li

Figure 7-2-1.—Classical (order 1) integrator.

7.2.2 Generalized (Calculus) Integrator

Consider the op amp circuit shown in figure 7-2-2. The input element to the op amp is the
lossless transmission line (zero order element). Its behavior is described by the wave equation

2°v(x 1) _ 1 9°v(x1)
ot*  ic ox

(7.221)

with appropriate boundary conditions. Here the solution at the terminal, equation (7.1.2.1), will
be used directly. The defining equations for this integrator are then

0= (00w (0) + .00, (7222
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for the zero order input element, and

v, ()= v, (1 :é DA ()= é Jiat=u, (o) (7223
i =i,  v,=0 (7.22.4)
1 .
I_
— C
||
— L
Vg if
i > Vo

Figure 7-2-2.—Generalized (order 1) integrator.

Therefore, solving fow,(t) gives

0=~ 2[4/ 2u 0+ .00k w3, (7229

v (t) = —Eé \/%%vi(r)dr - %icps(r)dr +v, (9, (7.2.2.6)
O O

v,(t) = - %1:@% DAV (1) | (72.27)

where

¢(v,,~Lact)= \/%i%(T)dT + C\/%vo(c) , t>c. (7228)

Taking unity values for the circuit parameté&sand c // ,the generalized calculus expression
for the circuit is then

v, (t) ==_D;v,(1). (7.229)
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This is, of course, the same expression as seen in equation (7.2.1.4) for the classical calculus
based integrator. The important difference is in the values of the respective initialization
functions. It is further important to note that the detailed evaluation done above toynobtain
would seldom be required in application. For this distributed integrator, the effect of the past
history is contained not only in the constagtc), which is the charge on the capacitor, but is
also carried in the remainder of tiét) function, which accounts for the distributed charge
along the semi-infinite line. It is also observed here that the zero order input element, since it is a
wave equation, will simply propagate any perturbatiow () along the semi-infinite line never
to be seen again, the only effect being a proportional variation in the dutjerfthis behavior
is true for terminal charging, however for the more general case of a side charged line a (an
additional) time function may be returned to the circuit output, which is dependent on the initial
voltage distribution on the line.

7.3 Differentiators
7.3.1 Classical (Integer Order Calculus) Differentiator

An idealized circuit for differentiation is shown in figure 7-3-1. The defining equations are

Vi(t)—Vg() 1 D (t C_[l dr+CI|
:%jii(r)dr +¥ :%jii(r)dr+vi_g(c), (7.311) ] W
C C _-»
C Vg If
V(1) = vo() = i ()R, (7.312) || | .
Vi ﬂ, Vo
i(t)=i,(t), v,(t)=0. (7.313 ii
This yields e
_ d 0 a7 Clee
v(0)=-Ri()=-Ra((-v ()]  (aLe  Fouwer3l Clasica (order)
v (t)=-RC_D v(9, t> ¢ (7.315)

The initialization functiony (vi 1,a,0, t) is the term vi_,(c), and is normally taken as zero;

however, it can give rise to a pulse response at time. This classical differentiator

(RC=1) is contrasted with the case below.
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7.3.2 Generalized (Calculus) Differentiator

The following equation set describes the generalized differentiator as shown in figure 7-3-2.

vi(t)—vg(t)=— DMi(t)== I i, ()dT +v,_,(c).(7.321)

For the zero element
14 o l.
V()= w0 = D 0) =500+
7 .
\/;w(lf ,O,a,c,t) , (7322

i(t)=i, (), v, =0 (7.3.2.3) C wv

T T T°

—h

These equations then yield li

Vv +yli 0, 10 (7324
\/;D dt )) ‘/’(f a G )D( ) Figure 7-3-2—Classical (order 1)
differentiator.
or
Dd O
= - — 1 732
vo(t)= = Cy/ B (t)+ (v,,,a,c,t)g (7:325)

v, (t)=- C\/% Div () (7.3.26)
where the initialization function associated with the generalized derivative is given by

] (vi La,c, t) = —%L/J(if Oa,.c ,t) (73217)

It is noted again that for the terminally charged integer order differentigbign= 0. This is
proven in the derivation associated with definition of the generalized derivative. As in the
generalized integrator case, this may also be observed from the physical behavior of the zero
order element; this is wave equation based and it is well known that disturbances at the terminal
end will be propagated away from the terminal and are not reflected back because of the infinite
length of the line. Again, for the more general case of a side charged line a (an additional) time
function will be returned to the circuit output.
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7.4 Zero Order Operators (ZOOs)

7.4.1 Classical (Calculus) ZOO

An electrical circuit for a voltage-to-voltage ZOO is presented in figure 7-4-1. The defining

equations are

v, () - v, (9 = R (9, (7411
vy(t) = v, ()= R (9, (7.412)
i(t)=i, ), v,t)=0. (7.413

Then from the above equations or from equation
7.1.3.4, withZ, = R, andZ = R,
R R
Vo() == —-v(t) == —=- .DYv(1), (7.414)
R R
wherey (vi ,0,3,c, t) = 0. Clearly this device has no
memory. Contrast this with the following cases.

Rf

Figure 7-4-1.—Classical (calculus)
zero order operator.

7.4.2 Generalized (Calculus) ZOOs

There are several (many) possible electrical realizations for the zero order operator. Three of
these are shown in figure 7-4-2, only the last circuit of figure 7-4-2 will be analyzed. Not
surprisingly, the voltage-to-voltage zero order elements are based on the voltage-to-current zero
order element described earlier (eq. (7.1.2.1) and (7.1.2.2)). The defining equations are

i(t)= \/z D(vi(8)-v,(9). (7.4.21)

where t,u(vi—v ant \/7¢

(74.22)

vJQ—v40=J:_ D (t), (7.4.23

where L,U(if ,O,a,c,t) =
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Then

\/7 DOB( E \/7 oy (7.4.26)
\/i:Cd?B\/i d (t)+l.,ll VY ,O,ac§+w(i,0,ac)}é, (7427
- e atulh- e 0-0.0 (7429

= DY, (t). (7429

and

vo(t) = -

The associated initialization is given by

w(voac)=y(y-yoa c)+\/i:fw(if oac i)

=[S0+ 5.0, (74210

l,c

and is the initialization function for the full circuit. Here it is seen that the zero order operator in
the general case returns the input functioft) but also provides thextratime function

L,U(vi ,0,a,c, t) :

R - @

Rf ?
j — A\ — i
_>
Ri ( ! if Vg {
Vi _>V V — 7: Vi 5
ii ii

Figure 7-4-2.—Three realizations of the generalized zero order operator.

T

T
T T 17,

T

T T T°

-

T T T°
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7.5 Half Order Circuits
7.5.1 Semi-Integrator

The circuit shown in figure 7-5-1 performs the function of semi-integration of the input
voltage v, (t). The component equations are

vi()-v,(=i(H)R (7511

Vy(t) = vo() = ra D% (), (7512
- -1

where g(i-1 2act)= r\/E(p (), 7513)

randa are as defined for equation (7.1.1.3),
and i,(t) =i, t), v,=0. 7514)

Solving for v, (t)

v.(t) == CD{“@%vi(t)@, then  (7515)

Figure 7-5-1.—Semi-integrator.

\/_ -1/2
vo(t):—% D7 (1), (7.5.1.6)
where
w(v.-%aci= R(i ~%.ac )=%¢ .| @517

Here equation (7.5.1.6), with the leading coefficient specialized to one, is the basis of the semi-
integrator computing element. Note, the equivalent (uninitialized) impedance form may also be
readily found from equation (7.1.3.4), becauge= ra [ s'2 and,Z = R this is given as

AC I rR*/Si . (7518
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7.5.2 Semi-Differentiator

The circuit of figure 7-5-2 yields an output voltage proportional to the semi-derivative of the

input voltage. For this circuit,

i (1) =ﬁ D¥2(v, (0)- v, (0) (7521
wherer anda are as defined for equation (7.1.1.3),
w(v - v, %.a.60= nag,(9, (7522
v, () - v () =i, ()R and (7523
i(t)=i, @), v,({)=0. (75.24)
Then,
v,(t) = Ri, (1 =-% DYy, (1) (7525

andy (v, % ,a,c,t)ztp(\(— A ,a,c,) = wa ¢ () 71526)

Here equation (7.5.2.5), with the leading coefficient specialized to one, is the basis of the semi-
differentiator computing element. These theoretical circuits then can be used as the basis of an

infinite variety of combination circuits. A few of these will be examined to illustrate some of the

issues of the earlier theoretical development.

I IT.I°

W

Vg I

Vi —>

Ii Vo

Figure 7-5-2.—Semi-differentiator.
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7.6 Combination Circuits

7.6.1 Tandem Semi-Integrators

Consider the circuit shown in figure 7-6-1. For this circuit,

v, (1) =- rlg DYy (1), (7.611)
with L,Ul(vl,—%,a, c, t) ,and (7612)
v,(t) =- rzizaj D Vv, (1), (7613
with @,(v,,~%,a,¢1) . (7614)
Then
v,(t) = rlrzRi_ Vcélaz D v (1), (7.6.15)
R,

with @(v,,~La,c = d"%(vy-%.ac )—ﬁwz(vz ~%acy. ([616)

— —

- -
— —
R Vg
@
V1 V2 V3
\ — / \ — /
\/ \/
D_}/Z D_%

Figure 7-6-1.—Integrator composed of tandem semi-integrators.
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7.6.2 Inverse Operations

Consider the circuit shown in figure 7-6-2. Far= R = =1, = \/a_l = \/a_z =1, the
solution is

v;(t) ==, D¥2v, (1) ==, DV*(- . D; "2y (1) = . DY u(9, (7.621)

as expected. Note however, thaft) = v,(t) only under the condition that
wlv,0act)= dW(v-%.ac}-w(v% ack=0 7622)

wherey(v,0,a,c.t)is the initialization function for the combined operation (i @?v,(t) ). Under
terminal charging, of course this is satisfied. However, under side charging conditions it is seen
that v,(t) = v,(t) +l/J(Vl,O, a G I) and the zero propertyn®t (necessarily) satisfied as indicated
previously. It should be clear from this example however that the ability to readily analyze such
systems is a perfectly acceptable (indeed desirable) state of affairs.

The discussion will now move away from circuits analogous to generalized calculus
operations and consider applications from other areas of engineering and science.

T
—
— . 4 .
—
—
— R>
—
Ri Vg Vg
‘ —e
V1 V2 V3
. _:_V y N _:_V ,
D2 D/

Figure 7-6-2.—Inverse operations using semi-operators.
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7.7 Dynamic Thermocouple

It is desired to determine the dynamic (frequency) response of a thermocouple (fig. 7-7-1)
that is designed to achieve rapid response. The thermocouple consists of two dissimilar metals
with a common junction point. To achieve a high level of dynamic response, the mass of the
junction and the diameter of the wire are minimized. Because the wires are long and insulated
they will be treated as semi-infinite (heat) conductors. The analysis will determine the transfer
function relating the junction temperature to the free stream gas temp&fd)reT,( 9. For
the semi-infinite conductors the conducted heat @t is given by

k,
Q)= 7P, (779 ko Q)
Tg —_— =T
wherekis the thermal conductivity and is the Q(t)
thermal diffusivity. For the transfer function the Sk, Qz(t5

effects of initialization are not required, therefore,

Figure 7-7-1.—Dynamic thermocouple.

ally(t)'s are zero. Thus the following equations
describe the time domain behavior:

= T()- 709). (7.7.2) %
k
1 ~ =]
L= DrR)-a0-a(d). 773 - ;
K i
Q(t)= ﬁ .DY’T, (1), and (7.7.4) : :
Q,(t) = ke () (7.7.5) e x 1:05 10"
2 \/a_z et b ’ o Frequency {rads/s)
where h Ais the product of the convection heat f : :
transfer coefficient and the surface area g 1] A S | R —— i
is the product of the junction mass and the specif § | ™ L L |
heat of the material. Taking the Laplace transforn = ' '
of these equations, eliminating tkgs, and | L L [ )
o 1 1
collecting like terms yields e L oD -
g i EEE
L k, K, N i iy iy 10"
%NCV s+ h AFTS]JZ ZDTb Freguency (rads/s)
a, o, 4
hAT(9, (7.7.6) Figure 7-7-2.—Frequency response of

dynamic thermocouple.
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which gives the transfer function as

(9 _ 1 717
T, n| O o
9 mwep, 18k, k Hae,,

OhAD hAH/a, Ja,

The magnitude and the phase angle are readily determined by kettingg and noting that
Vi = cosm/4+i sinm/ 4 is the principle value. Figure 7-7-2 shows the transfer function in the
form of a Bode plot for

W
h—Z =0005 and Ao @@z 50 .

The value of the generalized (fractional) calculus is clearly demonstrated in this application;
conventional approaches here would require the solution of two simultaneous partial differential
equations with an ordinary differential equation. While this is straightforward, the effort and
required attention to detail would be much greater. The response shows two distinct asymptotes;
in the mid-frequency range a slope of -10 db/decade corresponds testhbehavior and a
slope of -20 db/decade for frequencies aboVeaddians /second corresponds teshéhavior.

7.8 Electrolytic Cell

The electrolytic cell is well known to exhibit fractional behavior. Typical analysis is based on
impedance methods which ignore initialization effects. This example analyzes a simple model of an
electrolytic cell (battery) (fig. 7-8-1). The fractional element is a half order system representing the
electrode-electrolyte interface. This is a diffusion process and is known in that field as the Warburg
impedance or constant phase element (see for example, Bard and Faulkner (1980)). Here we have
included an initialization along with the basic properties of the Warburg element. Two phases of
behavior are considered: (1) a charging/relaxation phase and (2) a load drawing or usage phase. The
charging/relaxation phase takes place betweea = 0 andt = c, with actual current flow
(electrical charging) only occurring far=0< t < b. Later, in the load drawing phase analysis the
desired charging response may be time shifted to s, if that is desired. The end point
(c= b), in the charging analysis will be kept variable and may be quickly obtained by s$etting
in the solution equations of this section.
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7.8.1 Charging Phase

The time domain equations for the charging/relaxation phase (fig. 7-8-1(a)) are

vy (t) = v2(1) :% D) (78.L]) WAR

=L i, e+ v ). oo |
o 7.8.1.2 _ICT
Va(t) = va(9) = i ()R, (781.2) 0 W

W
- Charaing phase Girc
ic(t) =iR(t) " W(t) and (7813) (a) Battery arging phase circuit
(0)== oD?(v,(1) - v(0) -
iy (t) == ,DV?(v,(1) - vy(1)). (7.8.1.4) vi(t) ()
B W) 700 —
‘—_Il_ 2 iwl(®)
L
Taking the Laplace transform yields R__(>)
IR(t
\
w(9-u(3= Li9+ =0, 7819 RV
(9 u(3= 10 R L0
i * (7.8.16) (b) Battery - Load usage phase circuit
i.(s)=ix(s)+iy(9), and (7.8.1.7) y
. 1
W@ =5 (w9 (P +u (- vwr0 e 1o g L —

(c) Charging current profile
Figure 7-8-1.—Electrolytic cell circuit.
(a) Charging phase. (b) Load usage phase.
and rearranging, yields the following forms (c) Charging current profile.

Now eliminating the internal variablés(s), i (s) andy,( 9

ey

c S+CB§/2

%Sw(vz -\,206 g_ Y—z(o)(% ¥ +%z)
(3)+ Doy X
Bs+d&58° +=cH (s) - sy(s) +V1-2(0) .

or Vl(ﬁ‘%(ézgmg S £+ 4 S

vi(9 - v (7.819)

(7.8110)
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These forms can be used either for transfer function analysis or to determine time responses
including the effect of initialization. The following transform pairs apply to the forced term of
equation (7.8.1.10)

0 0
0B O H1 B B E
LG 0= Bo—-—e™® erfd /10, (7.811)
07+ Bn Bt R 4 )a
0 RO
0 0
L‘lhgzlegﬁgterﬁ(%ﬁ), and (78112
E©

(7.8113

é— egggt erf«(% \/_t)

ana[m

During the initialization period, 8 a<t < c, both of the initializations are taken as zero. Then,
for example, with impulsive charging,(s) =1, and

1. H1 B BVt %
v,(t) - v E + Bth =e %R erf (7.8114)
For general_(t), the convolution theorem is applied yielding
t B
v, (t) - v I%IE + E\/% —%eﬁﬁg rfd]—% (7.8115

This is the solution (response of overall cell voltage to charging current) for the charging phase
behavior for a general(t) . If the current is taken as a constant during the electrical charging period,
i_(t)=1,,for 0=a<t<hb, then,i (t —7) =1 (ult - 1) —u(t - T - b)) (see fig. 7-8-1(c)) and this
equation becomes

tHh Ha1 B B DB\/?%
vl(t)—v3(t)—! +BB?__R6 erfd%— dr

B . D
—u(t—b)ja—+5%i—5e£ erfd]ﬂ dr, t>0. (78116
b B m R 0OR
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The above integrals are readily evaluated since
t
ET — 1 Et - i
_([e erf<(«/ ET) d= B[e erf((\/ft) 1] + \/TT\/_EL (78117

(see for example, Spanier and Oldham (1987)), thus,

G t REE =N BT
vy (t) = vs(t) = ICSF_"'ZB\/;—EEB fd]—D TD—%

-b, o [t=b RH@@% 08Vt- b0l 2D8ﬂ
u(t—b)g— 28\/7 fd]—g % >0. (7.8118

The voltage responsg(t) — v,(t) of the battery during the electrical charging pericdtG< b= and.
during the relaxation period>1 are shown in figure 7-8-2. Also shown is the voltage response of the

Warburg element, (t) - v,(t) (determined in subsection 7.8.2). The battery parameters are taken to be

R=B= C=10

Figure 7-8-2.—Voltage response with time for electrolytic
cell-charging and relaxation phases.
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7.8.2 Initialization Function

The above response (eq. (7.8.1.16) or (7.8.1.18)) then can be the basis for a “good”
mathematical form for an initialization function for systems (cells) of this type with constant current
charging. It of course includes both the effects of the Warburg element and the capacitor. These
may be separated as follows. Singg(0) must be zero, the voltage across the Warburg element
v,(t) = v,(1), is determined as

()= (0= (u()- ()~ ()~ ) = (- v;))—ijicdr, >0,
=(l v, ) CII )-ur-b)dr

which using equatioq 7.8.1)16 , yields

=j’ 8 @@2 rfd%ai% dr -

BE\/TU =€
u(t— bJ’ B\F ng rfcg?”—f%dr t>0. (7.82])

This is the voltage across the Warburg element during the charging period. Note, this
equation also applies fdar> ¢ with an open external circuit. The input function to (argument of)
the semi-derivative of the Warburg impedancé/g.{t) - vs(t)) . If it is assumed that the Warburg
impedance is terminally charged, then the initialization function for the Warburg element may be
determined from equation (6.3.3), namely,

m

L,U(f,u,a,c,t):ﬁw(f,—p,a,c,t)+¢,U(h,m,a,c,). 633)

Because terminal charging is assunge(th,1,a, c, t) = 0, thus,
1 dj .
Wone(Vz — Vo %6, 8,6 1) = majﬁ’(t —1)7 v, (1) - vy(1))dr, t>c.  (7822)

This then is a “good” initialization of the Warburg element in the context of this electrical
configuration and charging profile. This initialization appliesforc> b> a=0. Inits
application, if it is desired to initialize witb = 0, then it would be necessary to time shift this
result appropriately, that is, replatdy t — cin equation (7.8.2.1). Shown here is the formal
approach to determination of the initialization function. In the next section, material creep, an
alternate approach, which is sometimes useful, will be shown.
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7.8.3 Load Drawing Phase

Consider now the load phase behavior of the electrolytic cell as shown in figure 7-8-1(b). The
defining equations are amended to reflect the added external load resistance.

v, (t) - v, (1) = 1 D (t II )dt +v,_,(c) (7.831)
v, (t) - vs(t) = ir ()R, (7832

i (t) =ir) +i W) =i ). (7833
v,(t)-v, () =i ()R, and (7.8.34)
) =% D, ()- (1) (7839)

Taking the Laplace transform yields
VYRR AN (O

v,(9) VZ(Q—CS|C(3)+ s (7.8.36)
vo(9-w(9= k(3R (7.837)
i;(5) = ix(8) + (9 = iru(9, (7.838)
v(9-u(9= k(3R  and (7839)
( (w(9- w( P+l v- ¥2%.0, c}. (78310)

Then from the charging analysis, equation (7.8.1.10), i{#) = ir (5 = (w(9- v( $)/ R,and
takinga=0, andc=1,

0 6% 10 0o 5
0 R < +-0 00

0 5B RO OOV,(1)  WYinalVa - vs,%,01§D
RS RB e  reld " " RO %

This response is seen to have no forced term and two initialization driven terms. These are
the initialization effect of the capacitor, i.e., the,(1) term, and the historic effect of the
Warburg impedance as reflected in thg,, term. It is readily analyzed using the following
transformation, lep=s?0 =5 p= &, then

,0 B
5 diar: %@2@ 0l -v,019)0
Vl(p)-Vs(F):D B R 1 5 1 0. (78312
Dp3+§+§32+p+C$ p’ . — E
H RO R RC" RR B R
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From this point, an appropriate substitution or approximation is madg (fp?) , and
conventional analysis tools (factoring, partial fractions, etc.) are applied to evaluate the
domain response. This response may be transformed backdaltireain and subsequently
inverse Laplace transformed back to the time domain if desired. This is expedited by the use of
special transforms, which will be presented in a later paper.

7.9 Material Creep
7.9.1 Creep Strain
Creep behavior of materials may be described and analyzed using the methods of fractional
calculus. A stress-strain law for certain viscoelastic materials has been suggested by G.W. Scott-

Blair (see Bland (1960) p. 5). It neglects both the instantaneous elastic and the long term viscous
flow effects. The relationship in terms of this paper is given by

1
e(t)= " DMo(t) (7911
or, when the specimen is new, no initialization is required hence,
1
e(t) = " .dvo(t). (7912

Here € ando are the strain and stress respectiv&lyand v are constants associated with
the materialy = Ofor an elastic solid, ang = 1for a viscous liquid.

Consider a uniform stress load to be applied between timé&sandt =d , on a new
specimen (no initialization) then,

=k[H(t)- H(t-d)], (7913
where H is the unit step function, ardis the magnitude of the load.
Then,
t
_[ ~H(r - d)]ar, (7914)
O
O ! O
K g )" tdr H(t J' t-7)""dr H(t-d)g, and (7.915)
d O
m[t H{t) -(t—d)" H(t- d)] , (7.916)
defines the strain (creep) response for the prescribed loading. The effeststiown in figure

M(v+1)

. . K .
7-9-1, where normalized strain (creep)—isTs (t). The response (t)for t<d=1,is
seen to be essentially the creep function. The response b1 is the stress relaxation period.
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Figure 7-9-1.—Creep (strain) versus time for varieys = v in figure]

7.9.2 Creep Initialization

For creep applications of this type the initialization function associated with constant past
loading may be readily inferred from the solution for equation (7.9.1.6), as follows.
Consider any problem initialized at pomtthen,

D91 (t)=,D 91 (t), t>c, (7921
M) +y(f-a-acl= 0 ()=, d" (), tc, (7922

thus ¢ may be expressed as
w(f-qact)=d* f()-.d° 1}, tc.  (7923)

It is now desired to obtain an initialization function for the creep problem initialized at
t =c=dwheredis as used in equation (7.9.1.6). Applying this result, equation (7.9.2.3), to the
creep problem gives
D Vo(t)=d o(t)+w(o,-v,ac1), t>c. (7924

Then takingc = d and sinceo(t) =0 fort >d,
.dva(t)=,dva(t)=0, t>c=d, (79293

andK times the response equation (7.9.1.6) is the initializatifththus,

F(\,/(+1)

w(o,~v,a,c1) = [tHO-(t-0) H(t-9]., t>c=d. (926)
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This initialization function may now (with proper time shifting) be used for specimens which
have experienced a creep history.

7.9.3 Relaxation Function

The stress (creep) relaxation functigft)is defined as the stress required to produce a strain
H(t), excluding terms that are initially infinite or do not tend to zerpb@somes infinite
(Bland (1960) p. 38). This is easily determined in the fractional setting. For a new material, the
stress is given by

x(t)=o(t) =K d"e (t) =K, d}, d-Ve(1), (7.9.31)
_,d 1
—Kara_@ﬂtr)HUMT, (7932
- K -V
Xa)_FG:Vf H(t), (7933

yielding as a result the creep relaxation function for this formulation.
7.10 Fractional Order Tracking Filter
The availability of fractional differintegrals allows new freedoms in many areas, tracking

filters is but one example. Here a noisy sigr@) is to be filtered to yield the filtered signal
y(t). Only a single active element will be considered here, then the filter is described by

(Oth +a)y(t): ax 9 (7101
or
oY) +Y (v a0, c )+ ay)= ak}. (7102)
Taking the Laplace transform yields
Sy 9+y( 3+ af b= alk)s (7103
or

(9= x(g- Y

=a 29w g (710.4)

While they function may allow the possibility of “precharging” the filter to minimize the
filter lag, the initialization function in this application will be discarded. The transfer function of
the filter then is given by

N5

y9__ a

x(9 s'+a’

(7109
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Then the behavior of the filter can be considered by studying the response to a uni(@lefhirs,

y(s) = ﬁ . (7105)

The full range & g< I of course available, and requires a series solution for the inverse
transform. This will not be detailed here, but time responses for a step inp(it)fsihowing the
effects of varying bottaand q are presented in figure 7-10-1. The inverse transform for the
special case = } is readily shown as

y(t) =1- & Erfc(at]é). (7106

The frequency response for the tracking filter (eq. (7.10.5)) for vageuth a=1, is
presented in figure 7-10-2.

Step response, yit)
] [ ]
T in m

=
w

=
ra

01

Step response, y(t)

Time (sec.)

Figure 7-10-1.—Fractional order tracking filter response to unit step input,
varyingg (a = 1) and varyin@g (g = 0.5).
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Figure 7-10-2.—Fractional order tracking filter frequency response, vagyanga = 1.0.

7.11 Viscoelastic Damped Vibration

The addition of damping is important in many applications for stability augmentation. One
such application in the aerospace field is damping augmentation for gas turbine fan blades. The
vibration modes in this case are typically bending, torsion, or combinations. Here it is desired to
determine the analogous linear vibration mode behavior. The viscoelastic damping may be added
in different ways. The interest here is in determining the transfer funstamnain response) in
general terms, then, by specialization of the constants, various cases may be examined.

NASA/TP—1998-208415 88



Since the transfer function requires the initializations to be zero, the equations describing the
generalized system (fig. 7-11-1) are

Fo= Ky od™ (% = %) (7119 . Ax
F = k(%= %), (7112) R e
k;, gl k, 02

F, ==k, o0 (% = %), (7113 X 2 X
F, =Kg od®(x,, = %), and (7114) nA L Xm,

k § ks, g3
FR+F=mod . (7115)
Where thek's are damping coefficients and the spring Al’ﬁ

constant, andn, F,and x are the mass, force and Figure 7-11-1.—Spring-mass-visco

displacements respectively. damped dynamic system.

Taking the Laplace transform of these equations and eliminamlngmd X, Yields

O O D
O 1 2
F(s) = Bklisq ,-x) and F(9= Dk75[15(&) x).  @116)

%“ @1 S H

Then after eliminating the forces and some algebra the generalized transfer function is obtained as

1 1 1 1
Ty TR T B Sod B B

X(9 _ k, ks k K (7117)
x (9 Moo, Moe, Mo, Mowe, L oo, Tova, Toaa, Tonan
kik, kk, ki ks Kk k, Ks Ky k

Now various special cases may be examined by appropriate choides f@nd theq 's For
example, to allow damper 3 to represent a conventional (dashpot) damgier, leand select
the appropriate,. Here, for simplicity, theglandg2 dampers will be eliminated (made into
springs of infinite stiffness), that isl= g2= 0 and k = k, = e, and theq3damper will be
considered to be viscoelastic (i.e., fractional valuegi®); then the transfer function for figure 7-
11-1is given as
=SB4 K

K,
(9 m> Tm (7118)
XI(S) Sz+ qu

m
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The frequency response may now be evaluated by lettingo and determining the magnitude

and phase angle (polar form argument) using equation (7.11.8). The resijtmifoland

various values ok, /mand 8 are shown in figures 7-11-2 and 7-11-3.
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Figure 7-11-2.—Mass-spring-viscoelastic damper transfer function,
varyingg3 the viscoelastic coefficient from O to 2 by steps of 0.2.
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K3/m varies from 0.25 to 3 by steps of 0.88,
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8. Variable Structure (Order) Differintegral
8.1 Variable Order Integration
8.1.1 Research Issues

This section presents some research questions which have been enabled by the fractional
calculus. Consider the fractional differential equation

Day(t) = £(t) (8111)

and the inferred integral equation
DI (t) = y(b). (8112)

Sinceqin the fractional calculus can take on any real (or complex) value, the question is asked,
What is a desirable definition for the fractional integral when q is allowed to vary either with
t or y? More specificallyyWhat is an appropriate definition for

D (t)2 (8113)

8.1.2 Motivation

There is considerable potential physical motivation toward the creation and implementation
of such a concept. A few possibilities will be mentioned here.

From the field of viscoelasticity (Bland (1960)), the effect of temperature on the small
amplitude creep behavior (force/extension) of certain materials is to change the characteristics
from elastic (spring-likeq [10) to viscoelastic or viscous (damper-likel1-1). This relates to
the expression

DI F(t) = k(% (0 - %,(9). (8121)

where F is force andxis displacement. Experience (and experiments), typically, is based on fixed
temperature, but real applications may well require a time varying temperature to be analyzed.
Glockle and Nonnenmacher (1995) studied the relaxation processes and reaction kinetics of
proteins which are described by fractional differential equations of gtd&he order was found
to have a temperature dependence. (It is interesting to note that this work also alludes to
difficulties which appear to be related to initialization).
Smit, W. and deVries (1970) studied the stress-strain behavior of viscoelastic materials
(textile fibers) with fractional order differential equations of orderwith 1> a = 0. They
show, based on related experimemtsto be dependent on strain level.
Polymer linear viscoelastic stress relaxation was studied by Bagley (1991). This process is
described by fractional differential equations of ogidor a given fixed temperature. The paper
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shows a clear dependencegBobn temperature for polyisobutlene and correlates fractional model
and experiment. Further, it is indicated tigabrder fractal time processes leag@torder
fractional derivative consitutive laws.

From the field of damage modeling, as the damage accumulates (with time) in a structure the
nonlinear stress / strain behavior changes. It may be that this is better described with variable
order calculus.

Finally, the behavior of some diffusion processes in response to temperature changes may be
better described using variable order elements than time varying coefficients.

8.1.3 Analysis

For present purposes, attention will be focused only on variatiogsioth t, that is,
q = o(t). Further, initialization will not be considered to start, and the Riemann-Liouville
definition will be taken as the basis (see Appendix C for Griinwald variable structure basis
discussion). For simplicity in these consideratiensOand w(f —q(t),a,c, t) = 0. The most

general form then under consideration is
q(tr)-1

( T )ar
‘f (qg (7) f(r)dr, (8131

where the notatioqe(t, r) andq, (t,7) have been used to indicate that the arguments of taf the
exponent and the gamma function may be different. The simplest arguments to be considered are
a(t,7) - oft), 1)~ 1) andq(t,7) » o(t-1). For the two occurrences qfin the defining

integral (eq. (8.1.3.1)), this yields 9 permutations to be studied. To quickly screen these possibilities and
more, computer simulations of the defining integrals (with a variety of test funcfifis ) were

used to quickly eliminate potential definitions with unsatisfactory properties. The desirable properties,

of course, are those contained in the criteria examined earlier. Clearly backward compatibility, and the
zero properties are not issues for definitions which are special cases of equation (8.1.3.1). This leaves
linearity and the index law (composition) to be considered.

8.1.4 Criteria

Linearity will be considered first using the general form, equation (8.1.3.1). Then,
)Qe(t’r)_l

OqﬂﬂaN0+qu:j%i§67ﬁ{aﬂﬂ+bqﬂ%ﬁ, (814.1)

j )qe(t 1)1 f(r)dr + bjw g(r)dr, (814.2)
b 1(a(t0) b (ay(t.7))

=a D/ f(t)+ b ;D% o ). (814.3)

Therefore linearity is satisfied for all argumentsgoh the defining integral.
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The computer simulation showed that the interesting behavior occurred when
9.(t,7) = q,(t, 7). Of these three cases only the cger) — o(t— 1) provided adherence to the
index law (for selected functions); but it did not satisfy composition, namely, under the definition

o= [
D/ "Wf(t) = [~——F—— f(r)dr (8149
o [ rae=0)
it was inferred that
D7 DM (1) = DY D (1) 2 DM £ (1), (814.5)

It is observed that this definition is a convolutional form. The convolution character of the
generalized integral will now be used in proving the above property; indeed the property is fully
equivalent to the associative law for convolution integrals (see Mikuzinski (1967)).
The index law will now be proved. The LHS of equation (8.1.4.5), under the definition of
equation (8.1.4.4), is
t (t _ _[)q(t—r)—l T (T _ S)v(r—s)—l

DV DM f(t) = f(s)dsd. 14,
ot ol (t) '!; F(q(t—T)) '([ F(V(T—s)) (s)ds (814.6)
Replacing the outer integral with its convolution equivalent yields
q(r)-1 t- T(t T S) v(t-1-9)-1 T
J'r J' FM-7-9) f(s)dsd; (8147
w = TN
letting s=w -7 00 ds= dv,
t T q(r)-1 't (t _ w)v(t—w)—l ——dr
= [ fw-T1)dw dr, (8148) A
0 r(q(T)) T r(V(t w)) OO dw—>| |<_t w
T
tt )1y _ v(t-w)-1
=J’J’ T (- w) f(w-1)dw dr. (814.9)
I (q(r)) r(v(t- w)) W =T~
The double integral is extended to the triangular region idr
as shown in figure 8-1-1, yielding . A
w
t—a))(“”)l 0 dw —»||et

) flo-1)dw dr . (81410 Figure 8-1-1.—Reference

triangular region.

ﬂ r(M(t-w)

7

Now the double integral is converted back to an iterated integral with the order of integration
reversed, giving
(t C()) v(t-w)- q(r)-1

I r(v(t-w)) IF C6))

f (w-1)dr dw. (81411
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The inner integral is now replaced with its convolutional equivalent

_ t (t _ w)v(t—w)—l ® (w_ _[)q(w—r)—l
= { F(V(t-w) ! F(qw=-1) f(r)dr dw, (81412
=D, "V,D £ (1) (81413

which completes the proof. At this time the definition of equation (8.1.4.4) appears to be the
most satisfactory definition in terms of these properties and its strong relationship to convolution
theory. It is noted explicitly that compositionrist satisfied, that is, that

0 Dt_q(t) 0 Dt_V(t) f (t) = th_V(t) th_q(t) f (t) 7 ODt_q(t)_V(t) f (t) (8'1'4'14)

However, the lack of this computational convenience does not diminish the potential usefulness
of this concept for application in the physical sciences. It would however, considerably increase
the analytical difficulty.

It should be noted that the definition

o1 =[S ()
D,/ *f(t) =[———f(r)dr t)>0 8141
0t _([ r(q(t)) q ( 3
can be shown to have a weak form of composition, namely,
oD DI ()=oD O F (1) D DOF(E),  u(t)k>0. (81416
Also the definition
1) =) b r)a 0>0. a1
D, t) = T)dT qit)>0, 141
R T

can be shown to have the following weak form of composition, as
D DO (t)=,D ) £ (1) DO DIFF(t), kv()>0. (81418

The weak composition results indicated here have been validated by computer numerical
simulation for a variety of functions.

The question of which is the most desirable definition for variable order integration, of
course, is still an open issue. Based on the preliminary investigation of this study, the most
compelling definition is given by

—) f(r)dr, o(t) >0, (81419

because of adherence to the index law and because of the convolutional form which makes
available all of the results of the associated theory. It may be possible that a slightly more
complicated form of composition can be shown than that considered in the inequality (8.1.4.5).
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Several candidate forms have been considered without success. It is noted that different physical
processes may effectively use different definitions and that all three of the forms, equations
(8.1.4.4), (8.1.4.15), and (8.1.4.17), may prove useful. Finally, it is further noted that a set of
differintegrals parallel to those based on the Riemann-Liouville fractional integral (equation
(8.1.3.1)) may be formed based on the Grinwald definition. A brief consideration of the variable
structure differintegral based on the Grinwald definition is given in Appendix C.

8.1.5 Laplace Transform

The derivation of the Laplace transform of the variable structure integral follows that for the
fixed order case exactly since the convolution theorem can be applied. Then, considering the
uninitialized case

LDt (1)} = }e‘st%

- dr%dt o9)>0,t>0, (815)

then as before
{r00(0) = 3 3= L] ) G ) o) 8152

q(t)-1

Now taking h(t) = f(t) and g(t) = m the convolution theorem yields

L{,D £ ()} = F(9&(9 = | Lﬁg (8153

The variable structure differintegral allows the introduction of a new transfer function
concept. The conventional transfer (see fig. 8-1-2) function relates the Laplace transform of the
output to the transform of the input by

—3 |, D" f—

a(t)-1 f(t = p-at)
TF, = Lﬁt % (8154) ( ) y(t) oDy f (t)
@r (q(t)) = Figure 8-1-2.—Block diagram for transfer functions

of variable structure integral.
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Sincegis now a variable it also may be thought of as an input, and a new transfer function may
defined as

L{q(t)} . (8155

For the considered definitions, the process figit)to y(t) has not been shown to be linear.

That is
o Dy (t) =, DY £ (1) +, DIV (1)

has not been shown. Thus, the meaning and utility of equation (8.1.5.5), for these definitions
requires further consideration.

The relationship of the two transfer functions may be determined as follows. Consider
f(t)and g(t) to be related byg(t), where

q(t) =j f(Y)o(t-7)dr then L{q(t)} = L{ f(0} { o(0)} (8156
by the convolution theorem. Then
vy ffw} TR TR, _
TF, = o}~ L ] () S L{g(t)}. (8157

8.2 Variable Order Differentiation

If the form of equation (8.1.4.4) is assumed, then the parallel definition for the variable
structure derivative might be given (considered) as

DI()=,07 DIOIE).  a)>0, 821

whereq(t) = m- g1, and mis a positive integer. If it is assumed tluft) is always positive,

then m could be taken as the least integer greater tffgn However, since composition does

not hold it is not at all clear that this is a reasonable definition. Matters are further complicated
by the fact that it may be desirable to allg(t) to range over both positive and negative values.
This places a “seam” a = 0, which may make any approach based on the Riemann-Liouville
definition implausible and perhaps require an approach based on the Grinwald definition.
Consideration of the variable structure differintegral based on the Grinwald definition is
presented in Appendix C.
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9. Summary

The primary goal of the work discussed in this paper has been to make practical the
application of the fractional calculus to the problems of science and engineering. This has
required a new (modified) set of definitions for the fractional calculus. This formulation includes
newly developed initialization functions that bring in the effects of the past for the system being
analyzed. For fractional integrals and derivatives with respect to time, the initialization functions
are time functions, which are a generalization of the initializing constants required for ordinary
differential equations.

The following was accomplished:

Presented several conceptualizations for the fractional differintegrals, both analytically
based and physically based. Conceptualizations of the fractional differintegrals in terms
of weighted time delays of the argumeift) (conveyor analogy) have been developed.
Geometric interpretation of the generalized differintegral have been developed.
Developed a formal initialization for the fractional integral and derivative which is
incorporated directly into the definitions.

Broadened the definition of the integer order derivative to include initialization.

Proved that the Ross criteria for a fractional calculus, namely, that backward
compatibility, zero order property, linearity, and composition hold under terminal
charging conditions. Provided inter-relationship constraints between initialization
functions required for satisfaction of the criteria under side charging conditions.
Eliminated the requirement that the function and all of its derivatives be zero at the
starting point,t = ¢, by the introduction of the initialization function.

Developed Laplace transform expressions for the generalized fractional integrals and
derivatives (with initialization included).

Developed Laplace transforms for integer order and fractional order decompositions of
both the generalized fractional integral and derivative.

Determined the effect of the starting point on the Laplace transforms of the fractional
integral and derivative.

Determined the Laplace transform of the initialization function

Generalized the Laplace transform of the differintegral (eq. (6.7.1)).

Applied the above theoretical results to a wide variety of applications to demonstrate the
power of the mathematics. Showed electrical computing elements that are theoretically
capable of simulating the generalized (fractional) operators, and demonstrated some of
the mathematical properties through use of these analog elements.
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o Applied the theoretical results to solve applications, in instrumentation,
electrochemistry, material creep, filtering, and viscoelastically damped vibration.

o Proposed a variable structure (order) fractional differintegral, provided motivation for
its development, and proposed three particular Riemann-Liouville based
implementations. Examined these for adherence to the criteria, and determined related
Laplace transforms. Proposed Grinwald based variable structure definitions. (The
variable structure concept appears to strengthen the connection between the fractional
calculus and convolution theory.)

The issue of when to us#’ or d™ versusD" or D™, respectively, will be dictated by the

application at hand and the nature of the required initialization (valye)oin an analytical
setting it is the analyst’s prerogative in relation to the task at hand.

While the above development was done witlinferring time as the independent variable,

the results may be readily extended to a spatial independent variable.
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Appendix A
Application Of Dirichlet’'s Formula

This appendix augments the proof of criterion 5. It is basically a restatement of the work of
Ross (1974a and 1974b). It is desired to validate

LA () = L0 f(Y) = ﬁ}c(t 1) Tlv).[(r ~1,) ™ (r,)dr, r,

= rorl 0 (-n) (o ar (A3

Now by a special case of the Dirichlet formula applied over the triangular region shown in
figure A-1, this equation can be written as

L )
_ 1 ‘e _ u-1 _ v-1
_W[‘r[(t ) (r-7,)" f(r,)drdr,, (A2
or idr
-1 f(r )t(t—r)“'l(r—r )V_ldr dr (A.3) A 1
B F(U)F(V)‘[ ' ‘T[ ' s ' (©0) —>(|j|<—
Now for the inner integral let d !
T—-T 1 Al-a
y:t—Tl u T:(t_rl)y-'-rl T, (t.t)
and dr :(t—rl)dy
at the limits of integration
T=7, 0y=0 and 1=t 0 y=1.
©9
Therefore the inner integral of equation (A.3) becomes !
A lb
t 1
= I (t- r)”'l(r -7 l)V_ldr = (t - rl)u ’ lI(l— y)u_l vy, (A4) Figure A-1.—Reference triangle.
T, 0

Now whenu>0 andv> 0 the integral is identified as the Beta integral with the value
g r(ur(v)

Jeoy ey

0
Thus, equation (A.3) becomes

1 : u+v-1
r(u+v)-[(t_rl) f(rl)drl, (A.5)

which by definition is
d; v £ (1)

C
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Appendix B
Laplace Transform Of Multiple Integer Order Integrals

This appendix will derive an expression for the Laplace transform of multiple integer order
integrals for comparison with fractional transforms. Then, the problem is to determine

L{ag(t) =L jf ...... -nrlf(tn) dt, dt - dt, dggl (B1)

g(tj)z_[g(tj+1)dg+l, for j=12---n-2, (B.2)

and
o) = [ f(t)et, (83
Then starting from the outside, a
L{g(t)} = L% o(t) dgé (B.4)
=L {o(u) + oo = Lu{o(u)} + & (85)

Now replacingg(tl) using equation (B.2) yields

1

L{g(t)} {gag(tz)dz%% , (B.6)
:%%L{g(tz)} +°—;§+% | (B.7)
_1 G G
=2 L{g(tz)} + 2 + S (B.8)

Repeating the process a totalraimes yields the final result,

4t tha n

L II ...... If(tn) dt_dt_,------ dt, dtlgz S_]; L{ f(t)} + Z% n=123---, (B.9)

a a a

c =Ig(q) dt . (B.10)
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Appendix C
Variable Structure (Order) Differintegral Griinwald Basis

A variable structure differintegral may also be formulated based on the Griinwald definition,
equation (4.2.1). LeAT =(t—a)/ N in equation (4.2.1), and limit considerationgt@ ¢ t) or
g q(t— jAT). Then, expressing generally asy [ q(t, jAT), a generalized Grunwald form
may be written as

N

. th(t) f (t) = lim _lATqE(t,jAT) r(j _q.N (t’ jAT))
ZITH_,DOO 1=0 r(_ Jdo (t, JAT))F(J +1)

f(t-jaT). (c2)

It is observed thau(t, jAT)occurs three times in this expression, in the expoggnin the
numeratorg,, , and in the denominatay, . Thus the number of permutations possible with this
form is eight, which is comparable with the nine possible permutations using the Riemann-
Liouville form for the differintegral. Table C-1 shows the possible permutations with the
Griunwald formulation.

Table C-1 Permutations &f

Permutatio 1 2 3 4 5 6 7 8
qe(t. iaT)=| t t t t t—jaT | t-jaT | t—jAT | t-jaT
au(t jaT) =] t t t—JAT | t-jAT | t— AT |t-jAT t t
0t jaT)=| t | t-jAT t t- jAT | t- jAT t t— jAT t

Consider two Grunwald based (eq. (C.1)) evaluatiorgd:dft) f(t), for a commory(t),
with one evaluation foa < t < t,and another foa < t<'t, wheret, > t;. In particular, consider
q(t) as shown in figure C-1(a), whegét) steps from constant valuﬁti) to the constant value
q(tz)at timet =t,. The evaluation td =t, can be viewed as an evaluation froma tot,,
summed to an evaluation frams t, tot,. In view of the hereditary nature of the fractional
differintegral, the evaluation tb=t,is part of the history in the evaluati@to t,; thus it is

apparent that for the evaluation b f (t)

01zt based on the value au(t, jAT) =t (i.e.,
- L

all permutations except permutation 5, table C-1) will yield an undesirable result. This is so
because, over the<t, part of the evaluation the value qft, jAT) = o(t) =  t,)will be used in
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the summation, essentially changing the history (figure C-1(b)). Thus it appears that the only
(potentially) satisfactory permutation from this set of possibilities (table C-1) is permutation 5,
namely,

o T(i-a(t- jaT)) |
_DIVE(t) = lim § AT%(-7) N f(t-jaT). C2
B D e (%)) (£ A B

This definition parallels equation (8.1.4.4), and adds to the credibility of the convolution related
variable structure form.

The intuitive nature of the Griinwald form, in terms of the available conceptualizations
allows the hope that a form of it may be evolved which would satisfy composition. Detailed
studies of the Grinwald permutations have not yet been performed.

q(t)

a7 //q(tz - jaT)

sesessssneseneni(t- jAT)

ANRRNETI ARRNRRNERNRREN]
a t, t,
LN N ] LN J 43210:j

(b) Functionsversusj

Figure C-1.—Variable differintegration. (a) Functions versugb) Functions versys
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